Folding and Fracturing of Rocks: 50 Years of Research since the Seminal Text Book of J. G. Ramsay
CONTAINS OPEN ACCESS
This Special Publication is a celebration of research into the Folding and Fracturing of Rocks to mark the 50th anniversary of the publication of the seminal textbook by J. G. Ramsay. Folding and Fracturing of Rocks summarised the key structural geology concepts of the time. Through his numerical and geometric focus John pioneered and provided solutions to understanding the processes leading to the folding and fracturing of rocks. His strong belief that numerical and geometric solutions, to understanding crustal processes, should be tested against field examples added weight and clarity to his work. The basic ideas and solutions presented in the text are as relevant now as they were 50 years ago, and this collection of papers celebrates John's contribution to structural geology. The papers explore the lasting impact of John and his work, they present case studies and a modern understanding of the process documented in the Folding and Fracturing of Rocks.
The importance of interfacial instability for viscous folding in mechanically heterogeneous layers
-
Published:January 02, 2020
-
CiteCitation
Evangelos Moulas, Stefan M. Schmalholz, 2020. "The importance of interfacial instability for viscous folding in mechanically heterogeneous layers", Folding and Fracturing of Rocks: 50 Years of Research since the Seminal Text Book of J. G. Ramsay, C. E. Bond, H. D. Lebit
Download citation file:
- Share
Abstract
Viscous folding in mechanically heterogeneous layers is modelled numerically in two dimensions for linear and power-law viscous fluids. Viscosity heterogeneities are expressed as circular-shaped variations of the effective viscosity inside and outside the layers. The layers are initially perfectly flat and are shortened in the layer-parallel direction. The viscosity heterogeneities cause a perturbation of the velocity field from the applied bulk pure shear, which perturb geometrically the initially flat-layer interfaces from the first numerical time step. This geometrical perturbation triggers interfacial instabilities, resulting in high-amplitude folding. We compare simulations with heterogeneities with corresponding simulations in which the heterogeneities are removed after the first time step, and, hence, only the initial small geometrical perturbations control wavelength selection and high-amplitude folding. Results for folding in heterogeneous and homogeneous layers are similar, showing that viscosity heterogeneities have a minor to moderate impact on fold wavelength selection and high-amplitude folding. Our results indicate that the interfacial instability is the controlling process for the generation of buckle folds in heterogeneous rock layers. Therefore, existing analytical and numerical solutions for folding in homogeneous layers, in which folding was triggered by geometrical perturbations, are useful and applicable to study folding in natural, heterogeneous rock layers.