Skip to Main Content
Skip Nav Destination

This paper reports a long-term field investigation of a fractured dolostone aquifer that was penetrated by a dense non-aqueous phase liquid. High-resolution source zone characterization shows the evolution of deep penetration to the back-diffusion conditions seen at the present day. Metolachlor, a common herbicide, was released into the overburden overlying a fractured dolostone aquifer within a short time window (1978–81). In 2000, the plume front arrived at a municipal supply well located 930 m down-gradient, increasing to a maximum concentration of 2 μg l−1. Groundwater monitoring with high-resolution, depth-discrete multi-level sampling systems since 1992 shows a clearly delineated bedrock plume. Numerous rock core samples show metolachlor in the low-permeability rock matrix at the bottom of the aquifer. The mass distribution and bedrock hydraulic head pattern strongly suggest that metolachlor entered the bedrock as a free-phase dense non-aqueous phase liquid penetrating to the aquifer bottom, preferentially accumulating in some horizontal fractures, dissolving quickly as a result of the rapid groundwater flow and then diffusing into the rock matrix, where back-diffusion sustains a dilute, persistent and stable plume. Strong plume retardation by matrix diffusion and sorption has greatly mitigated the impact on water quality in the down-gradient supply well, allowing for its continued use, while back-diffusion and degradation maintain a persistent, dilute plume managed by appropriate monitoring.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.
Close Modal

or Create an Account

Close Modal
Close Modal