Groundwater in Fractured Bedrock Environments: Managing Catchment and Subsurface Resources
Fractured bedrock aquifers have traditionally been regarded as low-productivity aquifers, with only limited relevance to regional groundwater resources. It is now being increasingly recognised that these complex bedrock aquifers can play an important role in catchment management and subsurface energy systems. At shallow to intermediate depth, fractured bedrock aquifers help to sustain surface water baseflows and groundwater dependent ecosystems, provide local groundwater supplies and impact on contaminant transfers on a catchment scale. At greater depths, understanding the properties and groundwater flow regimes of these complex aquifers can be crucial for the successful installation of subsurface energy and storage systems, such as deep geothermal or Aquifer Thermal Energy Storage systems and natural gas or CO2 storage facilities as well as the exploration of natural resources such as conventional/unconventional oil and gas. In many scenarios, a robust understanding of fractured bedrock aquifers is required to assess the nature and extent of connectivity between such engineered subsurface systems at depth and overlying receptors in the shallow subsurface.
Groundwater in fractured bedrock environments: managing catchment and subsurface resources – an introduction
-
Published:January 01, 2019
-
CiteCitation
U. Ofterdinger, A. M. MacDonald, J.-C. Comte, M. E. Young, 2019. "Groundwater in fractured bedrock environments: managing catchment and subsurface resources – an introduction", Groundwater in Fractured Bedrock Environments: Managing Catchment and Subsurface Resources, U. Ofterdinger, A.M. MacDonald, J.-C. Comte, M.E. Young
Download citation file:
- Share
Hard rocks, including crystalline igneous, metamorphic and strongly cemented sedimentary and carbonate rocks, cover about 50% of the Earth’s land surface (Singhal & Gupta 2010). Globally, the volume of groundwater contained in hard rock aquifers is not well constrained (Comte et al. 2012) but locally they can be important aquifers (MacDonald et al. 2012), albeit with low groundwater storage and poor primary porosity and permeability. Groundwater flow in these hard rocks is commonly observed to be associated with water-bearing discontinuities, such as fractures, joints and faults (Mazurek 2000; Berkowitz 2002; Font-Capo et al. 2012), and in the weathered regolith (Wright 1992; Chilton & Foster 1995; Deyassa et al. 2014). Structural elements such as fault zones also strongly govern the behaviour of these systems (Forster & Evans 1991; López & Smith 1995; Bense et al. 2013). The nature, abundance, orientation and connectivity of these water-bearing features are largely governed by the history and nature of structural deformation of the bedrock, and commonly impose strong anisotropic flow and transport parameters on these bedrock aquifers (Hsieh et al. 1985; Bour & Davy 1997; Mortimer et al. 2011). Weathering processes furthermore lead to an alteration of bedrock composition and associated aquifer properties resulting in enhanced fracture connectivity and an overall vertical stratification/zonation of bulk aquifer properties, ranging from highly altered shallow regolith horizons to more competent sparsely fractured bedrock at depth (Dewandel et al. 2006; Krásný & Sharp 2007; Lachassagne et al. 2011).