Martian Gullies and their Earth Analogues
CONTAINS OPEN ACCESS
Gullies on Mars resemble terrestrial gullies involved in the transport of abundant material down steep slopes by liquid water. However, liquid water should not be stable at the Martian surface. The articles in this volume present the two main opposing theories for Martian gully formation: climate-driven melting of surficial water-ice deposits and seasonal dry-ice sublimation. The evidence presented ranges from remote-sensing observations, to experimental simulations, to comparison with Earth analogues. The opposing hypotheses imply either that Mars has been unusually wet in the last few million years or that it has remained a cold dry desert – both with profound implications for understanding the water budget of Mars and its habitability. The debate questions the limits of remote-sensing data and how we interpret active processes on extra-terrestrial planetary surfaces, even beyond those on Mars, as summarized by the review paper at the beginning of the book.
Geomorphological analysis of gullies on the central peak of Lyot Crater, Mars
Correspondence: [email protected]
-
Published:January 01, 2019
-
CiteCitation
Virginia C. Gulick, Natalie Glines, Shawn Hart, Patrick Freeman, 2019. "Geomorphological analysis of gullies on the central peak of Lyot Crater, Mars", Martian Gullies and their Earth Analogues, S. J. Conway, J. L. Carrivick, P. A. Carling, T. de Haas, T.N. Harrison
Download citation file:
- Share
Abstract
The central peak region of Lyot Crater provides an intriguing case study of Martian gully formation on local topographic highs. To better understand how these gullies formed, we carried out a detailed morphological analysis using a HiRISE stereo image pair and a digital terrain model. Gully lengths range from c. 2.2 to 4.3 km, with maximum depths from 17 to 54 m. Alcove slopes range from c. 20 to 22°, channel slopes range from 12 to 16° and apron slopes range from 10 to 14°. In general, these slopes are much lower than both the angle of repose (c. 33°) required to initiate dry flows and the apex slope required to keep these flows from depositing (>21°) under Mars gravity. We find that the observed gully morphology and spatial associations are consistent with an origin by liquid flow. Apron volumes are c. 10–40% of the gully volume, which we suggest indicates significant volatile loss (water and/or CO2) in the slope materials in which they formed because apron volumes emplaced by dry gravitational flows would equal or exceed the gully volumes due to their lower packing density. These observations, coupled with the gullies’ unique micro-environmental setting, lead us to favour a fluvial origin. In addition, we find that the gullies formed almost exclusively on the western slope region, which suggests a possible orographic component. Potential water sources may have been supplied locally in the recent geological past by dry winds blowing across an ice-covered lake situated in a low elevation area just west of the central peak or more globally during periods of higher obliquity. In either case, the integration of morphometric and morphological investigations suggests that these gullies probably formed by surface runoff and through-flow from snow- or icepack melting on the central peak of Lyot Crater.
Supplementary material: Figures S1–S8 and Tables SI and SII are available at https://doi.org/10.6084/m9.figshare.c.4309382