Martian Gullies and their Earth Analogues
CONTAINS OPEN ACCESS

Gullies on Mars resemble terrestrial gullies involved in the transport of abundant material down steep slopes by liquid water. However, liquid water should not be stable at the Martian surface. The articles in this volume present the two main opposing theories for Martian gully formation: climate-driven melting of surficial water-ice deposits and seasonal dry-ice sublimation. The evidence presented ranges from remote-sensing observations, to experimental simulations, to comparison with Earth analogues. The opposing hypotheses imply either that Mars has been unusually wet in the last few million years or that it has remained a cold dry desert – both with profound implications for understanding the water budget of Mars and its habitability. The debate questions the limits of remote-sensing data and how we interpret active processes on extra-terrestrial planetary surfaces, even beyond those on Mars, as summarized by the review paper at the beginning of the book.
Martian gullies: a comprehensive review of observations, mechanisms and insights from Earth analogues
Correspondence: [email protected]
-
Published:January 01, 2019
-
CiteCitation
Susan J. Conway, Tjalling de Haas, Tanya N. Harrison, 2019. "Martian gullies: a comprehensive review of observations, mechanisms and insights from Earth analogues", Martian Gullies and their Earth Analogues, S. J. Conway, J. L. Carrivick, P. A. Carling, T. de Haas, T.N. Harrison
Download citation file:
- Share
Abstract
Upon their discovery in 2000, Martian gullies were hailed as the first proof of recent (i.e. less than a few million years) flowing liquid water on the surface of a dry desert planet. Many processes have been proposed to have formed Martian gullies, ranging from liquid-water seepage from aquifers, melting of snow, ice and frost, to dry granular flows, potentially lubricated by CO2. Terrestrial analogues have played a pivotal role in the conception and validation of gully-formation mechanisms. Comparison with the terrestrial landscape argues for gully formation by liquid-water debris flows originating from surface melting. However, limited knowledge of sediment transport by sublimation is a critical factor in impeding progress on the CO2-sublimation hypothesis. We propose avenues towards resolving the debate: (a) laboratory simulations targeting variables that can be measured from orbit; (b) applications of landscape-evolution models; (c) incorporation of the concept of sediment connectivity; (d) using 3D fluid-dynamic models to link deposit morphology and flow rheology; and (e) a more intense exchange of techniques between terrestrial and planetary geomorphology, including quantitative and temporal approaches. Finally, we emphasize that the present may not accurately represent the past and that Martian gullies likely formed by a combination of processes.
- Arctic region
- California
- Canada
- case studies
- debris flows
- drainage
- Eastern Canada
- erosion features
- experimental studies
- Greenland
- gullies
- laboratory studies
- liquid phase
- Los Angeles Basin
- Los Angeles County California
- Mars
- mass movements
- meltwater
- movement
- planets
- Quebec
- rheology
- seepage
- simulation
- surface features
- terrestrial planets
- three-dimensional models
- United States