Detecting, Modelling and Responding to Effusive Eruptions
CONTAINS OPEN ACCESS
For effusive volcanoes in resource-poor regions, there is a pressing need for a crisis response-chain bridging the global scientific community to allow provision of standard products for timely humanitarian response. As a first step in attaining this need, this Special Publication provides a complete directory of current operational capabilities for monitoring effusive eruptions. This volume also reviews the state-of-the-art in terms of satellite-based volcano hot-spot tracking and lava-flow simulation. These capabilities are demonstrated using case studies taken from well-known effusive events that have occurred worldwide over the last two decades at volcanoes such as Piton de la Fournaise, Etna, Stromboli and Kilauea. We also provide case-type response models implemented at the same volcanoes, as well as the results of a community-wide drill used to test a fully-integrated response focused on an operational hazard-GIS. Finally, the objectives and recommendations of the ‘Risk Evaluation, Detection and Simulation during Effusive Eruption Disasters’ working group are laid out in a statement of community needs by its members.
Operational thermal remote sensing and lava flow monitoring at the Hawaiian Volcano Observatory
-
Published:January 01, 2016
-
CiteCitation
M. R. Patrick, J. Kauahikaua, T. Orr, A. Davies, M. Ramsey, 2016. "Operational thermal remote sensing and lava flow monitoring at the Hawaiian Volcano Observatory", Detecting, Modelling and Responding to Effusive Eruptions, A. J. L. Harris, T. De Groeve, F. Garel, S. A. Carn
Download citation file:
- Share
Abstract
Hawaiian volcanoes are highly accessible and well monitored by ground instruments. Nevertheless, observational gaps remain and thermal satellite imagery has proven useful in Hawai‘i for providing synoptic views of activity during intervals between field visits. Here we describe the beginning of a thermal remote sensing programme at the US Geological Survey Hawaiian Volcano Observatory (HVO). Whereas expensive receiving stations have been traditionally required to achieve rapid downloading of satellite data, we exploit free, low-latency data sources on the internet for timely access to GOES, MODIS, ASTER and EO-1 ALI imagery. Automated scripts at the observatory download these data and provide a basic display of the images. Satellite data have been extremely useful for monitoring the ongoing lava flow activity on Kīlauea’s East Rift Zone at Pu‘u ‘Ō‘ō over the past few years. A recent lava flow, named Kahauale‘a 2, was upslope from residential subdivisions for over a year. Satellite data helped track the slow advance of the flow and contributed to hazard assessments. Ongoing improvement to thermal remote sensing at HVO incorporates automated hotspot detection, effusion rate estimation and lava flow forecasting, as has been done in Italy. These improvements should be useful for monitoring future activity on Mauna Loa.
- applications
- ASTER instrument
- data processing
- detection
- Earth Observing System
- East Pacific Ocean Islands
- East Rift Zone
- effusion
- eruptions
- future
- geophysical methods
- GEOS
- Hawaii
- Hawaii County Hawaii
- Hawaii Island
- Hawaiian Volcano Observatory
- hot spots
- imagery
- Kilauea
- lava flows
- Mauna Loa
- MODIS
- monitoring
- observatories
- Oceania
- Polynesia
- prediction
- Puu Oo
- rates
- remote sensing
- risk assessment
- satellite methods
- United States
- volcanic risk
- volcanism
- Kahaualea 2 Flow