Skip to Main Content
Skip Nav Destination

Organic-rich shale contains significant amounts of gas held within fractures and micropores and adsorbed onto organic matter. In the USA shale gas extracted from regionally extensive units such as the Barnett Shale currently accounts for 6% of gas production and is likely to reach 30% by 2015. Shale gas prospectivity is controlled by the amount and type of organic matter held in the shale, its thermal maturity, burial history, microporosity and fracture spacing and orientation. Potential targets range in age from Cambrian to the late Jurassic, within the main UK organic-rich black shales: younger shales have been excluded because they have not reached the gas window, but they may possess a biogenic gas play. A geographic information system, showing the distribution of potential reservoir units, has been created combining information on hydrocarbon shows, thermal maturity, fracture orientation, gas composition, and isotope data to identify potentially prospective areas for shale gas. Some of these data are shown as graphs and maps, but crucial data is lacking because earlier exploration concentrated on conventional reservoirs. The prospects include Lower Palaeozoic shale basins on the Midland Microcraton (a high risk because no conventional gas has been proved in this play), Mississippian shales in the Pennine Basin (the best prospect associated with conventional fields and high maturity), Pennsylvanian shales in the Stainmore and Northumberland Basin system (high risk because no conventional gas discoveries exist) and Jurassic shales in Wessex and Weald basins (small conventional fields signify potential here).

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.
Close Modal

or Create an Account

Close Modal
Close Modal