Understanding Granites: Integrating New and Classical Techniques

Granite magmatism represents a major contribution to crustal growth and recycling and, consequently, is one of the most important mechanisms to have contributed to the geochemical differentiation of the Earth’s crust since Archaean time. Granites are also often associated with ore bodies, and their study therefore has direct commercial relevance.
The modern view of the granite problems requires the application of many different theoretical, experimental and empirical resources provided by geophysics, geochemistry, experimental petrology, structural geology, scale modelling and field geology. Because of the complexity of the granite problem, it is necessary to integrate a variety of techniques and corroborate the findings with field observations.This is the philosophy of this book.
Many chapters are review papers dealing with the development and achievements of a particular technique, whilst other chapters deal with the application of a number of techniques to a specific problem. This volume brings together papers that would otherwise be dispersed in different publications.
The book will be of interest to igneous petrologists, geophysicists, structural geologists and geochemists.
What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Available to Purchase
-
Published:January 01, 1999
-
CiteCitation
Alberto E. Patiño Douce, 1999. "What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?", Understanding Granites: Integrating New and Classical Techniques, Antonio Castro, Carlos Fernández, Jean Louis Vigneresse
Download citation file:
- Share
Abstract
The origin of different kinds of granitic rocks is examined within the framework of experimental studies of melting of metamorphic rocks, and of reaction between basaltic magmas and metamorphic rocks. Among the types of granitic rocks considered in this chapter, only peraluminous leucogranites represent pure crustal melts. They form by dehydration-melting of muscovite-rich metasediments, most likely during the fast adiabatic decompression that results from tectonic collapse of thickened intracontinental orogenic belts. All other granitic rocks discussed here represent hybrid magmas, formed by reaction of basaltic melts with metamorphic rocks of supracrustal origin. These hybrid rocks include Cordilleran granites, formed at or near convergent continental margins, strongly peraluminous ‘S-type’ granites, alumina-deficient ‘A-type’ granites, and rhyolites associated with continental flood basalts. The differences among these types of granites reflect differences both in their source materials and in the pressures at which mantle-crust interactions take place. In turn, these variables are correlated with the tectonic settings in which the magmas form. Hybrid mafic cumulates are also produced by mantle-crust interactions, simultaneously with the granitic melts. These cumulates range from orthopyroxene + plagioclase-rich assemblages at low pressure to clinopyroxene + garnet-rich assemblages at high pressure, and are known to be important constituents of the lower continental crust. With the exception of peraluminous leucogranites, generation of granitic magmas is almost always associated in space and time with growth, rather than just recycling, of the continental crust.