Understanding Granites: Integrating New and Classical Techniques

Granite magmatism represents a major contribution to crustal growth and recycling and, consequently, is one of the most important mechanisms to have contributed to the geochemical differentiation of the Earth’s crust since Archaean time. Granites are also often associated with ore bodies, and their study therefore has direct commercial relevance.
The modern view of the granite problems requires the application of many different theoretical, experimental and empirical resources provided by geophysics, geochemistry, experimental petrology, structural geology, scale modelling and field geology. Because of the complexity of the granite problem, it is necessary to integrate a variety of techniques and corroborate the findings with field observations.This is the philosophy of this book.
Many chapters are review papers dealing with the development and achievements of a particular technique, whilst other chapters deal with the application of a number of techniques to a specific problem. This volume brings together papers that would otherwise be dispersed in different publications.
The book will be of interest to igneous petrologists, geophysicists, structural geologists and geochemists.
Geophysical imaging of the shape of granitic intrusions at depth: a review Available to Purchase
-
Published:January 01, 1999
-
Tools
- View This Citation
- Add to Citation Manager for
CitationL. Améglio, J. L. Vigneresse, 1999. "Geophysical imaging of the shape of granitic intrusions at depth: a review", Understanding Granites: Integrating New and Classical Techniques, Antonio Castro, Carlos Fernández, Jean Louis Vigneresse
Download citation file:
Abstract
This review deals with direct evidence (field statements and geochemistry) and indirect observations (modelling experiments, analogical models, and geophysics) on granite plutons to model their shape at depth. 3D modelling of granite plutons can be achieved using geophysical tools. Amongst these tools, heat-flow and heat-generation data used earlier to estimate the thickness of granitic plutons appear inadequate. Electrical methods are strongly influenced by near-surface heterogeneities and temperature, which minimize their effectiveness at depth. Magnetic surveys provide information on contacts between pluton and country rocks, since magnetic halos are appropriate to delineate surface contours, but the technique lacks the resolution to reveal deep boundaries. Anisotropy of magnetic susceptibility is particularly well adapted to determine the internal structures of plutons. Seismic profiles at usual frequencies (30–80 Hz) define the layered structure of the floor of several bodies but fail to show the rock-type variations and their internal fabrics, because of their low impedance contrasts. Conversely, high-resolution seismic reflection profiles reveal fault structures in granites but the pluton’s floor remains transparent. Gravity measurements have been widely applied in granites and owing to the 3D inversion of data, the shape of the pluton at depth and depth of its floor may be derived with confidence from density contrasts.