Transform Margins: Development, Controls and Petroleum Systems
CONTAINS OPEN ACCESS
This volume covers the linkage between new transform margin research and increasing transform margin exploration. It offers a critical set of predictive tools via an understanding of the mechanisms involved in the development of play concept elements at transform margins. It ties petroleum systems knowledge to the input coming from research focused on dynamic development, kinematic development, structural architecture and thermal regimes, together with their controlling factors. The volume does this by drawing from geophysical data (bathymetry, seismic, gravity and magnetic studies), structural geology, sedimentology, geochemistry, plate reconstruction and thermo-mechanical numerical modelling. It combines case studies (covering the Andaman Sea, Arctic, Coromandal, Guyana, Romanche, St. Paul and Suriname transform margins, the French Guyana hyper-oblique margin, the transtensional margin between the Caribbean and North American plates, and the Davie transform margin and its neighbour transform margins) with theoretical studies.
Late Cretaceous–Cenozoic tectonic transition from collision to transtension, Honduran Borderlands and Nicaraguan Rise, NW Caribbean Plate boundary
-
Published:January 01, 2016
-
CiteCitation
Javier Sanchez, Paul Mann, Peter A. Emmet, 2016. "Late Cretaceous–Cenozoic tectonic transition from collision to transtension, Honduran Borderlands and Nicaraguan Rise, NW Caribbean Plate boundary", Transform Margins: Development, Controls and Petroleum Systems, M. Nemčok, S. Rybár, S. T. Sinha, S. A. Hermeston, L. Ledvényiová
Download citation file:
- Share
Abstract
Northern Honduras and its offshore area include an active transtensional margin separating the Caribbean and North American plates. We use deep-penetration seismic-reflection lines combined with gravity and magnetic data to describe two distinct structural domains in the Honduran offshore area: (1) an approximately 120 km-wide Honduran Borderlands (HB) adjacent to the Cayman Trough characterized by narrow rift basins controlled by basement-involving normal faults subparallel to the margin; and (2) the Nicaraguan Rise (NR), characterized by small-displacement normal faulting and sag-type basins influenced by Paleocene–Eocene shelf sedimentation beneath an Oligocene–Recent, approximately 1–2 km-thick carbonate platform. Thinning of continental crust from 25–30 km beneath the NR to 6–8 km beneath the oceanic Cayman Trough is attributed to an Oligocene–Recent phase of transtension. Five tectonostratigraphic phases established in the HB and NR include: (1) a Late Cretaceous uplift in the north and south-dipping thrusting related to the collision in the south, between the Chortis continental block and arc and oceanic plateau rocks of the Caribbean; (2) Eocene sag basins in the NR and minor extension in the HB; two phases (3) and (4) of accelerated extension (transtension) across the subsidence mainly of the HB; and (5) Pliocene–Recent minor fault activity in the HB and a stable carbonate platform in the NR.