A Stratigraphical Basis for the Anthropocene

Humankind has pervasively influenced the Earth’s atmosphere, biosphere, geosphere, hydrosphere and cryosphere, arguably to the point of fashioning a new geological epoch, the Anthropocene. To constrain the Anthropocene as a potential formal unit within the Geological Time Scale, a spectrum of indicators of anthropogenically-induced environmental change is considered, and shown as stratigraphical signals that may be used to characterize an Anthropocene unit, and to recognize its base. This volume describes a range of evidence that may help to define this potential new time unit and details key signatures that could be used in its definition. These signatures include lithostratigraphical (novel deposits, minerals and mineral magnetism), biostratigraphical (macro- and micro-palaeontological successions and human-induced trace fossils) and chemostratigraphical (organic, inorganic and radiogenic signatures in deposits, speleothems and ice and volcanic eruptions). We include, finally, the suggestion that humans have created a further sphere, the technosphere, that drives global change.
Ice Sheets and the Anthropocene Available to Purchase
-
Published:January 01, 2014
Abstract
Ice could play a role in identifying and defining the Anthropocene. The recurrence of northern hemisphere glaciation and the stability of the Greenland Ice Sheet are both potentially vulnerable to human impact on the environment. However, only a very long hiatus in either would be unusual in the context of the Quaternary Period, requiring the definition of a geological boundary. Human influence can clearly be discerned in several ice-core measurements. These include a sharp boundary in radioactivity due to atmospheric nuclear testing; increases, unprecedented at least in the Holocene, in Greenland concentrations of sulphate, nitrate and metals such as lead; the appearance in ice-core air bubbles of previously undetectable compounds such as SF6; and the rise, unprecedented in the last 800 ka, in concentrations of carbon dioxide and methane. Some combination of these changes could be used by future generations to clearly identify the onset of a new epoch defined at a particular calendar date. However, it is not yet clear what the character of the fully developed Anthropocene will be, and it might be wise to let future generations decide, with hindsight, when the Anthropocene started, acknowledging only that we are in the transition towards it.