Advances in the Study of Fractured Reservoirs
Naturally fractured reservoirs constitute a substantial percentage of remaining hydrocarbon resources; they create exploration targets in otherwise impermeable rocks, including under-explored crystalline basement; and they can be used as geological stores for anthropogenic carbon dioxide. Their complex behaviour during production has traditionally proved difficult to predict, causing a large degree of uncertainty in reservoir development. The applied study of naturally fractured reservoirs seeks to constrain this uncertainty by developing new understanding, and is necessarily a broad, integrated, interdisciplinary topic. This book addresses some of the challenges and advances in knowledge, approaches, concepts, and methods used to characterize the interplay of rock matrix and fracture networks, relevant to fluid flow and hydrocarbon recovery. Topics include: describing, characterizing and identifying controls on fracture networks from outcrops, cores, geophysical data, digital and numerical models; geomechanical influences on reservoir behaviour; numerical modelling and simulation of fluid flow; and case studies of the exploration and development of carbonate, siliciclastic and metamorphic naturally fractured reservoirs.
What can we learn from high-resolution numerical simulations of single- and multi-phase fluid flow in fractured outcrop analogues?
-
Published:January 01, 2014
-
CiteCitation
Sebastian Geiger, Stephan Matthäi, 2014. "What can we learn from high-resolution numerical simulations of single- and multi-phase fluid flow in fractured outcrop analogues?", Advances in the Study of Fractured Reservoirs, G. H. Spence, J. Redfern, R. Aguilera, T. G. Bevan, J. W. Cosgrove, G. D. Couples, J.-M. Daniel
Download citation file:
- Share
Abstract
Naturally fractured reservoirs (NFR), such as the large carbonate reservoirs in the Middle East, contain a major part of the world’s remaining conventional oil reserves, but recovering these is especially challenging as the fractures only constitute fluid conduits while the oil is trapped in a low-permeability rock matrix. Recovery factors are therefore difficult to estimate, permeability anisotropy is high, size and shape of drainage areas are difficult to constrain, early water breakthrough is likely to be associated with a high and irreversible water cut, and secondary recovery behaviour is unusual. Outcrop-analogue model-based discrete fracture and matrix (DFM) simulations have emerged recently, helping us to disentangle and rationalize this erratic production behaviour. They allow us to understand the emergent flow behaviour and resulting saturation patterns in NFRs. Thus, classical simulation approaches, such as dual-continua conceptualizations, can be critically evaluated and improved where they fail to capture the flow behaviour of interest.
This paper discusses recent advances in DFM simulation of single- and multi-phase flow processes in geologically realistic outcrop-analogue models, and solved with finite-element (FE) and finite-volume (FV) methods. It also reviews key results from recent DFM simulation studies, in particular how new measures such as the fracture–matrix flux ratio and velocity spectra can provide new means to analyse flow behaviour in heterogeneous domains or how results from outcrop-based simulations can be used to test the suitability of conventional upscaling approaches for NFR and guide the development of new ones. We close by enlisting outstanding challenges in outcrop-based flow simulations such as the need to capture the fracture–matrix transfer processes due to capillary, gravity and viscous forces accurately, which often implies detailed grid refinement at the fracture–matrix interface and small time-steps to resolve the physical processes adequately. Thus, we explore how outcrop-based flow simulation could be applied more routinely in NFR reservoir characterization and simulation workflows.