The Colli Albani Volcano

The Colli Albani volcano (also Alban Hills volcano) is the large quiescent volcanic field that dominates the Roman skyline. The Colli Albani is one of the most explosive mafic calderas in the world, associated with intermediate to large volume ignimbrites. At present it shows signs of unrest, including periodic seismic swarms, ground uplift and intense diffuse degassing, which are the main short-term hazards. New studies have discovered deposits related to previously unknown pre-Holocene and Holocene volcanic and phreatic activity. In the fourth Century B.C.E. Roman engineers excavated a tunnel through the Albano maar crater wall to keep the lake from breaching the rim and flooding the surrounding countryside, events that had previously destroyed this region several times.
The Colli Albani Volcano contains 21 scientific contributions on stratigraphy, volcanotectonics, geochronology, petrography and geochemistry, hydrogeology, volcanic hazards, geophysics and archaeology, and a new 1:50 000 scale geological map of the volcano. The proximity to Rome and the interconnection between volcanic and human history also make this volcano of interest for both specialists and non-specialists.
Volcanic hazards of the Colli Albani Available to Purchase
-
Published:January 01, 2010
-
Tools
- View This Citation
- Add to Citation Manager for
CitationM. L. Carapezza, F. Barberi, L. Tarchini, M. Ranaldi, T. Ricci, 2010. "Volcanic hazards of the Colli Albani", The Colli Albani Volcano, R. Funiciello, G. Giordano
Download citation file:
Abstract
Although controversy exists about the age of its most recent eruption (either 36 ka or <23 ka), Colli Albani volcano is unanimously considered to be quiescent and not exinct. During the Holocene, several lahars were generated by overflows from Albano crater lake up to the fourth century BCE, when the Romans excavated a drainage tunnel to keep the lake level below the crater rim. Such recent activity, together with the frequent occurrence of seismic swarms underneath the crater zone, the ongoing uplift of the volcanic edifice and the magmatic affinity of the emitted gas, indicate the presence of an active magma chamber. The most likely site for a new eruption is the deep crater hosted in the southern part of the Lake Albano, where the last eruptive events occurred. Any eruption would have a strong explosive character enhanced by the interaction of magma with the water of the lake and would endanger a densely inhabited area up to the outskirts of Rome. The hazard of a new overflow from Lake Albano is very low because of the present low level of the lake. There is instead a potential for CO2 release from the deep lake water following the occurrence of rollovers, which would threaten the lake shore, a site where thousands of people spend their vacations in the summer. However, the content of dissolved CO2 is presently far from saturation and no Nyos-type events will occur today. Presently, the main hazard is related to strong gas emissions (CO2, H2S and Rn) from fractured zones and gas blowouts from wells reaching shallow gas-pressurized aquifers.