Conjugate Divergent Margins
The main focus of the book is the geological and geophysical interpretation of sedimentary basins along the South, Central and North Atlantic conjugate margins, but concepts derived from physical models, outcrop analogues and present-day margins are also discussed in some chapters. There is an encompassing description of several conjugate margins worldwide, based on recent geophysical and geological datasets. An overview of important aspects related to the geodynamic development and petroleum geology of Atlantic-type sedimentary basins is also included. Several chapters analyse genetic mechanisms and break-up processes associated with rift-phase structures and salt tectonics, providing a full description of conjugate margin basins based on deep seismic profiles and potential field methods.
Variations in rift symmetry: cautionary examples from the Southern Rift System (Australia–Antarctica)
-
Published:January 01, 2013
-
CiteCitation
Nicholas G. Direen, Howard M. J. Stagg, Philip A. Symonds, Ian O. Norton, 2013. "Variations in rift symmetry: cautionary examples from the Southern Rift System (Australia–Antarctica)", Conjugate Divergent Margins, W. U. Mohriak, A. Danforth, P. J. Post, D. E. Brown, G. C. Tari, M. Nemčok, S. T. Sinha
Download citation file:
- Share
Abstract
We present a synthesis based on the interpretation of two pairs of deep seismic reflection crustal sections within the Southern Rift System (SRS) separating Australia and Antarctica. One pair of sections is from the conjugate margins between the Great Australian Bight (GAB) and Wilkes Land, in the central sector of the SRS, which broke up in the Campanian. The second pair of conjugate sections is located approximately 400 km further east, between the Otway Basin and Terre Adélie, which probably broke up in Maastrichtian time. Interpretations are based on an integrated synthesis of deep multi-channel seismic, gravity and magnetic data, together with sparse sonobuoy and dredging information, and the conjugate sections are presented with the oceanic crust removed beyond the continent–ocean boundary (COB).
At first order, both conjugate pairs show a transition from thinned continental crust, through a wide and internally complex continent–ocean transition zone (COTZ), which shows features in common with magma-poor rifted margins worldwide, such as basement ridges interpreted as exhumed subcontinental mantle. In the central GAB sector, the COTZ is symmetric around the point of break-up and displays a pair of mantle ridges, one on each margin, outboard of which lies a deep-water rift basin. Break-up has occurred in the centre of this basin in this sector of the SRS. In contrast, the Terre Adélie margin is nearly 600 km wide and shows an abandoned crustal megaboudin, the Adélie Rift Block. This block is underlain by interpreted middle crust, and appears to have a mantle ridge structure inboard, as well as an outboard exhumed mantle complex from which mylonitized harzburgite has been dredged. The conjugate margin of the Beachport Sub-basin is relatively narrow (c. 100 km wide) and does not appear to contain an exhumed mantle ridge, as observed along strike in the GAB.
These observations from a single rift spreading compartment show that radically different break-up symmetries and margin architectures can result from an essentially symmetric rifting process involving multiple, paired detachment systems. This indicates the need for caution in interpreting causative mechanisms of rifting from limited conjugate sections in other rifts. We speculate that the underlying crustal composition, rheology and structural preconditioning play a significant role in partitioning strain during the transition to break-up.
- Antarctica
- Australasia
- Australia
- Australian-Antarctic discordance
- Campanian
- continental crust
- continental margin
- Cretaceous
- crust
- crustal thinning
- deep seismic sounding
- deep-seated structures
- geophysical methods
- geophysical profiles
- geophysical surveys
- Great Australian Bight
- Indian Ocean
- Maestrichtian
- Mesozoic
- Mid-Indian Ridge
- oceanic crust
- Otway Basin
- plate tectonics
- reflection methods
- rift zones
- rifting
- seismic methods
- seismic profiles
- Senonian
- Southeast Indian Ridge
- surveys
- symmetry
- transition zones
- Upper Cretaceous
- Wilkes Land
- Terre Adelie
- Southern Rift System
- Beachport Sub-basin