Subaqueous Mass Movements and their Consequences: Advances in Process Understanding, Monitoring and Hazard Assessments

This volume focuses on underwater or subaqueous landslides with the overarching goal of understanding how they affect society and the environment. The new research presented here is the result of significant advances made over recent years in directly monitoring submarine landslides, in standardizing global datasets for quantitative analysis, constructing a global database and from leading international research projects. Subaqueous Mass Movements demonstrates the breadth of investigation taking place into subaqueous landslides and shows that, while events like the recent ones in the Indonesian archipelago can be devastating, they are at the smaller end of what the Earth has experienced in the past. Understanding the spectrum of subaqueous landslide processes, and therefore the potential societal impact, requires research across all spatial and temporal scales. This volume delivers a compilation of state-of-the-art papers covering topics from regional landslide databases to advanced techniques for in situ measurements, to numerical modelling of processes and hazards.
Effects of rotational submarine slump dynamics on tsunami genesis: new insight from idealized models and the 1929 Grand Banks event
-
Published:June 11, 2020
-
CiteCitation
T. Zengaffinen, F. Løvholt, G. K. Pedersen, C. B. Harbitz, 2020. "Effects of rotational submarine slump dynamics on tsunami genesis: new insight from idealized models and the 1929 Grand Banks event", Subaqueous Mass Movements and their Consequences: Advances in Process Understanding, Monitoring and Hazard Assessments, A. Georgiopoulou, L. A. Amy, S. Benetti, J. D. Chaytor, M. A. Clare, D. Gamboa, P. D. W. Haughton, J. Moernaut, J. J. Mountjoy
Download citation file:
- Share
Abstract
Sediment slumps are known to have generated important tsunamis such as the 1998 Papua New Guinea (PNG) and the 1929 Grand Banks events. Tsunami modellers commonly use solid blocks with short run-out distances to simulate these slumps. While such methods have the obvious advantage of being simple to use, they offer little or no insight into physical processes that drive the events. The importance of rotational slump motion to tsunamigenic potential is demonstrated in this study by employing a viscoplastic landslide model with Herschel–Bulkley rheology. A large number of simulations for different material properties and landslide configurations are carried out to link the slump's deformation, rheology, its translational and rotational kinematics, to its tsunami genesis. The yield strength of the slump is shown to be the primary material property that determines the tsunami genesis. This viscoplastic model is further employed to simulate the 1929 Grand Banks tsunami using updated geological source information. The results of this case study suggest that the viscoplastic model can be used to simulate complex slump-induced tsunami. The simulations of the 1929 Grand Banks event also indicate that a pure slump mechanism is more tsunamigenic than a corresponding translational landslide mechanism.
- bathymetry
- Burin Peninsula
- Canada
- earthquakes
- Eastern Canada
- engineering properties
- geometry
- Grand Banks
- Grand Banks earthquake 1929
- kinematics
- landslides
- mass movements
- mathematical methods
- Newfoundland
- Newfoundland and Labrador
- Papua New Guinea tsunami 1998
- rheology
- sea-level changes
- sensitivity analysis
- simulation
- slumping
- statistical analysis
- time series analysis
- tsunamis
- yield strength