Efficient handling of fault properties using the Juxtaposition Table Method
-
Published:July 17, 2020
Abstract
Faults are known to affect the way that fluids can flow in clastic oil and gas reservoirs. Fault barriers either stop fluids from passing across or they restrict and direct the fluid flow, creating static or dynamic reservoir compartments. Representing the effect of these barriers in reservoir models is key to establishing optimal plans for reservoir drainage, field development and production.
Fault property modelling is challenging, however, as observations of faults in nature show a rapid and unpredictable variation in fault rock content and architecture. Fault representation in reservoir models will necessarily be a simplification, and it is important...
Figures & Tables
Contents
Integrated Fault Seal Analysis
CONTAINS OPEN ACCESS

Faults commonly trap fluids such as hydrocarbons and water and therefore are of economic significance. During hydrocarbon field development, smaller faults can provide baffles and/or conduits to flow. There are relatively simple, well established workflows to carry out a fault seal analysis for siliciclastic rocks based primarily on clay content. There are, however, outstanding challenges related to other rock types, to calibrating fault seal models (with static and dynamic data) and to handling uncertainty.
The variety of studies presented here demonstrate the types of data required and workflows followed in today's environment in order to understand the uncertainties, risks and upsides associated with fault-related fluid flow. These studies span all parts of the hydrocarbon value chain from exploration to production but are also of relevance for other industries such as radioactive waste and CO2 containment.