Sweden: Lithotectonic Framework, Tectonic Evolution and Mineral Resources
CONTAINS OPEN ACCESS

The solid rock mass of Sweden forms a natural field laboratory revealing insight into the westward growth and reworking of one of the planet's ancient continental nuclei. Three major geological units are exposed in different parts of the country: the western part of the Fennoscandian Shield, mainly sedimentary rocks deposited on this crystalline rock mass and the Caledonide orogen. This volume synthesizes the tectonic evolution of Sweden over more than 2500 million years from the Neoarchean to the Neogene. Following an introduction describing the lithotectonic framework of the country and the organization of the volume, the tectonic evolution is addressed essentially chronologically. Different phases of intracratonic rifting, accretionary orogeny, continent–continent collisional orogeny and platformal sedimentation are identified. Sweden is one of Europe's major suppliers of metals, and the country's mineral resources are also presented in the context of the lithotectonic framework. Sweden: Lithotectonic Framework, Tectonic Evolution and Mineral Resources has been designed to interest a professional geoscientific audience and advanced students of Earth Sciences.
Chapter 6: Paleoproterozoic (1.9–1.8 Ga) syn-orogenic magmatism, sedimentation and mineralization in the Bergslagen lithotectonic unit, Svecokarelian orogen
-
Published:January 03, 2020
-
CiteCitation
Michael B. Stephens, Nils F. Jansson, 2020. "Paleoproterozoic (1.9–1.8 Ga) syn-orogenic magmatism, sedimentation and mineralization in the Bergslagen lithotectonic unit, Svecokarelian orogen", Sweden: Lithotectonic Framework, Tectonic Evolution and Mineral Resources, M. B. Stephens, J. Bergman Weihed
Download citation file:
- Share
-
Tools
Abstract
Felsic volcanic rocks (c. 1.91–1.89 Ga) and interlayered limestone, hosting Zn–Pb–Ag ± Cu ± Au ± Fe sulphide and Fe oxide deposits, characterize the Bergslagen lithotectonic unit, Svecokarelian orogen, south-central Sweden. Three sulphide mines are currently in operation. Siliciclastic sedimentary rocks stratigraphically envelop this volcanic succession and all the rocks are intruded by a dominant calc-alkaline, c. 1.91–1.87 Ga plutonic suite. Fabric development associated with folding and localized shear deformation followed at c. 1.87–1.86 Ga (D1) and was succeeded by strongly partitioned strain (D2). Dextral transpression along steeply dipping, WNW–ESE or NW–SE shear zones prevailed in the northern and southern domains, whereas major folding with east to northeasterly axial surface traces and shearing along limbs occurred in the central domain. Open folding (D3) subsequently affected the western areas. Polyphase metamorphism under low-pressure and variable temperature conditions included anatexis at c. 1.86 Ga (M1) and 1.84–1.80 Ga (M2). More alkali–calcic magmatic activity, combined with the emplacement of anatectic granite and pegmatite, overlapped and succeeded the M1 and M2 migmatization events at c. 1.87–1.83 Ga and c. 1.82–1.75 Ga, respectively. The younger granites are genetically linked in part to W skarn deposits and host Mo sulphide mineralization. Switching between retreating and advancing subduction systems during three separate tectonic cycles along a convergent, active continental plate margin is inferred.