Non-Wilsonian break-up predisposed by transforms: examples from the North Atlantic and Arctic
-
Published:November 11, 2019
-
CiteCitation
E. R. Lundin, A. G. Doré, 2019. "Non-Wilsonian break-up predisposed by transforms: examples from the North Atlantic and Arctic", Fifty Years of the Wilson Cycle Concept in Plate Tectonics, R. W. Wilson, G. A. Houseman, K. J. W. McCaffrey, A. G. Doré, S. J. H. Buiter
Download citation file:
- Share
-
Tools
Abstract
The Atlantic Ocean margins formed the basis for the seminal Wilson cycle concept, which suggests that oceans close, form fold belts, and later reopen in a concertina-like fashion. However, we observe that continental break-up of the North Atlantic–Arctic region only weakly reflects Wilson's concept. Rather than utilizing fold belts, transforms have been the dominant weaknesses that guided break-up, primarily because less force is required to break a plate via strike-slip related shearing than via rifting. Some transforms were inherited features, whereas others formed as part of the continental break-up process. Regardless of cause, once a transform has formed, the...
Figures & Tables
Contents
Fifty Years of the Wilson Cycle Concept in Plate Tectonics
CONTAINS OPEN ACCESS

Fifty years ago, Tuzo Wilson published his paper asking ‘Did the Atlantic close and then re-open?’. This led to the ‘Wilson Cycle’ concept in which the repeated opening and closing of ocean basins along old orogenic belts is a key process in the assembly and breakup of supercontinents. The Wilson Cycle underlies much of what we know about the geological evolution of the Earth and its lithosphere, and will no doubt continue to be developed as we gain more understanding of the physical processes that control mantle convection, plate tectonics, and as more data become available from currently less accessible regions.
This volume includes both thematic and review papers covering various aspects of the Wilson Cycle concept. Thematic sections include: (1) the Classic Wilson v. Supercontinent Cycles, (2) Mantle Dynamics in the Wilson Cycle, (3) Tectonic Inheritance in the Lithosphere, (4) Revisiting Tuzo's question on the Atlantic, (5) Opening and Closing of Oceans, and (6) Cratonic Basins and their place in the Wilson Cycle.