Detecting, Modelling and Responding to Effusive Eruptions

For effusive volcanoes in resource-poor regions, there is a pressing need for a crisis response-chain bridging the global scientific community to allow provision of standard products for timely humanitarian response. As a first step in attaining this need, this Special Publication provides a complete directory of current operational capabilities for monitoring effusive eruptions. This volume also reviews the state-of-the-art in terms of satellite-based volcano hot-spot tracking and lava-flow simulation. These capabilities are demonstrated using case studies taken from well-known effusive events that have occurred worldwide over the last two decades at volcanoes such as Piton de la Fournaise, Etna, Stromboli and Kilauea. We also provide case-type response models implemented at the same volcanoes, as well as the results of a community-wide drill used to test a fully-integrated response focused on an operational hazard-GIS. Finally, the objectives and recommendations of the ‘Risk Evaluation, Detection and Simulation during Effusive Eruption Disasters’ working group are laid out in a statement of community needs by its members.
Simulating the area covered by lava flows using the DOWNFLOW code
-
Published:January 01, 2016
Abstract
DOWNFLOW is a probabilistic code for the simulation of the area covered by lava flows. This code has been used extensively for several basaltic volcanoes in the last decade, and a review of some applications is presented. DOWNFLOW is based on the simple principle that a lava flow tends to follow the steepest descent path downhill from the vent. DOWNFLOW computes the area possibly inundated by lava flows by deriving a number, N, of steepest descent paths, each path being calculated over a randomly perturbed topography. The perturbation is applied at each point of the topography, and ranges within the interval ±Δh. N and Δh are the two basic parameters of the code. The expected flow length is constrained by statistical weighting based on the past activity of the volcano. The strength of the code is that: (i) only limited volcanological knowledge is necessary to apply the code at a given volcano; (ii) there are only two (easily tunable) input parameters; and (iii) computational requirements are very low. However, DOWNFLOW does not provide the progression of the lava emplacement over time. The use of DOWNFLOW is ideal when a large number of simulations are necessary: for example, to compile maps for hazard and risk-assessment purposes.
- accuracy
- Africa
- algorithms
- applications
- basalt flows
- Cameroon
- Central Africa
- computer languages
- computer programs
- Congo Democratic Republic
- data processing
- digital data
- digital terrain models
- eruptions
- Europe
- flow mechanism
- geographic information systems
- geologic hazards
- information systems
- Italy
- Kivu Congo Democratic Republic
- lava channels
- lava fields
- lava flows
- mathematical methods
- Mount Cameroon
- Mount Etna
- natural hazards
- Nyiragongo
- probability
- reliability
- risk assessment
- Sicily Italy
- simulation
- Southern Europe
- spatial data
- statistical analysis
- vents
- volcanic features
- volcanic risk
- volcanism
- West Africa
- triangular irregular networks
- DOWNFLOW
- steepest descent paths