Magnetic Methods and the Timing of Geological Processes

Magnetostratigraphy is best known as a technique that employs correlation among different stratigraphic sections using the magnetic directions defining geomagnetic polarity reversals as marker horizons. The ages of the polarity reversals provide common tie points among the sections, allowing accurate time correlation. Recently, studies of magnetic methods and the timing of geological processes have acquired a broader meaning, now referring to many types of magnetic measurements within a stratigraphic sequence. Many of these measurements provide correlation and age control not only for the older and younger boundaries of a polarity interval, but also within intervals. Thus, magnetostratigraphy no longer represents a dating tool based only on geomagnetic polarity reversals, but comprises a set of techniques that includes measurements of geomagnetic field parameters, environmental magnetism, rock-magnetic properties, radiometric dating and astronomically forced palaeoclimatic change recorded in sedimentary rocks, and key corrections to magnetic directions related to geodynamics, palaeocurrents, tectonics and diagenetic processes.
Magnetostratigraphy susceptibility for the Guadalupian series GSSPs (Middle Permian) in Guadalupe Mountains National Park and adjacent areas in West Texas
-
Published:January 01, 2013
-
CiteCitation
Brooks B. Ellwood, Lance L. Lambert, Jonathan H. Tomkin, Gorden L. Bell, Merlynd K. Nestell, Galina P. Nestell, Bruce R. Wardlaw, 2013. "Magnetostratigraphy susceptibility for the Guadalupian series GSSPs (Middle Permian) in Guadalupe Mountains National Park and adjacent areas in West Texas", Magnetic Methods and the Timing of Geological Processes, L. Jovane, E. Herrero-Bervera, L.A. Hinnov, B. Housen
Download citation file:
- Share
Abstract
Here we establish a magnetostratigraphy susceptibility zonation for the three Middle Permian Global boundary Stratotype Sections and Points (GSSPs) that have recently been defined, located in Guadalupe Mountains National Park, West Texas, USA. These GSSPs, all within the Middle Permian Guadalupian Series, define (1) the base of the Roadian Stage (base of the Guadalupian Series), (2) the base of the Wordian Stage and (3) the base of the Capitanian Stage. Data from two additional stratigraphic successions in the region, equivalent in age to the Kungurian–Roadian and Wordian–Capitanian boundary intervals, are also reported. Based on low-field, mass specific magnetic susceptibility (χ) measurements of 706 closely spaced samples from these stratigraphic sections and time-series analysis of one of these sections, we (1) define the magnetostratigraphy susceptibility zonation for the three Guadalupian Series Global boundary Stratotype Sections and Points; (2) demonstrate that χ datasets provide a proxy for climate cyclicity; (3) give quantitative estimates of the time it took for some of these sediments to accumulate; (4) give the rates at which sediments were accumulated; (5) allow more precise correlation to equivalent sections in the region; (6) identify anomalous stratigraphic horizons; and (7) give estimates for timing and duration of geological events within sections.