Laboratory gas injection tests of compacted bentonite buffer material for TRU waste disposal
-
Published:January 01, 2014
-
CiteCitation
Kazuto Namiki, Hidekazu Asano, Shinichi Takahashi, Tomoyuki Shimura, Ken Hirota, 2014. "Laboratory gas injection tests of compacted bentonite buffer material for TRU waste disposal", Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, S. Norris, J. Bruno, M. Cathelineau, P. Delage, C. Fairhurst, E. C. Gaucher, E. H. Höhn, A. Kalinichev, P. Lalieux, P. Sellin
Download citation file:
- Share
-
Tools
Abstract
The Radioactive Waste Management Funding and Research Center (RWMC) is leading a research programme to evaluate the gas transport mechanisms through a TRU (TRans-Uranium) waste disposal facility in Japan and acquire information on gas migration properties. In this paper we describe a series of laboratory gas injection tests using the bentonite adopted for use in Japanese TRU disposal, as well as an attempted visualization of the gas migration path inside the bentonite used as a buffer. By building a conceptual model from the results of these tests, the characteristics of gas migration through to breakthrough for bentonite can now...
Figures & Tables
Contents
Clays in Natural and Engineered Barriers for Radioactive Waste Confinement

This Special Publication contains 43 scientific studies presented at the 5th conference on ‘Clays in natural and engineered barriers for radioactive waste confinement’ held in Montpellier, France in 2012. The conference and this resulting volume cover all the aspects of clay characterization and behaviour considered at various temporal and spatial scales relevant to the confinement of radionuclides in clay, from basic phenomenological process descriptions to the global understanding of performance and safety at repository and geological scales. Special emphasis has been given to the modelling of processes occurring at the mineralogical level within the clay barriers.
The papers in this Special Publication consider research into argillaceous media under the following topic areas: large-scale geological characterization; clay-based concept/large-scale experiments; hydrodynamical modelling; geochemistry; geomechanics; mass transfer/gas transfer; mass transfer mechanisms.
The collection of different topics presented in this Special Publication demonstrates the diversity of geological repository research.