A mineral system approach to iron ore in Archaean and Palaeoproterozoic BIF of Western Australia
-
Published:January 01, 2015
-
CiteCitation
Thomas Angerer, Paul Duuring, Steffen G. Hagemann, Warren Thorne, T. Campbell McCuaig, 2015. "A mineral system approach to iron ore in Archaean and Palaeoproterozoic BIF of Western Australia", Ore Deposits in an Evolving Earth, G. R. T. Jenkin, P. A. J. Lusty, I. Mcdonald, M. P. Smith, A. J. Boyce, J. J. Wilkinson
Download citation file:
- Share
-
Tools
Abstract
This review paper examines banded iron formation-hosted higher-grade (>58 wt% Fe) iron ore types present in the two main metallogenic districts of Western Australia, the Yilgarn Craton and the Hamersley Province. The principal iron ore deposits from both districts exhibit variation in ore properties and genesis within and across districts, but also striking similarities. There are five critical elements involved in iron ore formation and preservation: (a) BIF iron fertility defined by stratigraphic and geodynamic setting; (b) Si-dissolving fluid flow; (c) high permeability at a range of scales; (d) exhumation and supergene modification; and (e) preservation of BIF-hosted iron...
Figures & Tables
Contents
Ore Deposits in an Evolving Earth

Ore deposits form by a variety of natural processes that concentrate elements into a volume that can be economically mined. Their type, character and abundance reflect the environment in which they formed and thus they preserve key evidence for the evolution of magmatic and tectonic processes, the state of the atmosphere and hydrosphere, and the evolution of life over geological time. This volume presents 13 papers on topical subjects in ore deposit research viewed in the context of Earth evolution. These diverse, yet interlinked, papers cover topics including: controls on the temporal and spatial distribution of ore deposits; the sources of fluid, gold and other components of orogenic gold deposits; the degree of oxygenation in the Neoproterozoic ocean; bacterial immobilization of gold in the semi-arid near-surface environment; and mineral resources for the future, including issues of resource estimation, sustainability of supply and the criticality of certain elements to society.