Magma emplacement in a transfer zone: the Miocene mafic Orano dyke swarm of Elba Island, Tuscany, Italy
-
Published:January 01, 2008
Abstract
Magmatic activity in the western part of Elba Island at the north end of the Tyrrhenian Sea lasted approximately 1.5 Ma during the Late Miocene, building a complex of nested Christmas-tree laccoliths, a 10 km-diameter pluton (Monte Capanne) and, finally, the steeply-dipping Orano dyke swarm (ODS). This igneous activity occurred as an extensional regime and followed the wake of eastward-migrating compression of the Apennine front. The ODS consists of hybridized mantle-derived magmas, constituting about 200 dykes totalling a length of approximately 90 km. These dykes intruded the northwestern part of the pluton (NW of the Pomonte–Procchio geomorphic lineament) and...
Figures & Tables
Contents
Structure and Emplacement of High-Level Magmatic Systems

There are continual rounds of annual conferences, special sessions and other symposia that provide ample opportunity for researchers to convene and discuss igneous processes. However, the origins of laccoliths and sills continue to inspire and confound geologists.
In one sense, this is surprising. After all, don’t we know all we need to know about these rocks by now? As testified by the diverse range of topics covered in this volume, the answer is clearly ‘no’.
This book contains contributions on physical geology, igneous petrology, volcanology, structural geology, crustal mechanics and geophysics that cover the entire gambit of geological processes associated with the shallow emplacement of magma. High-level intrusions in sedimentary basins can also act as hydrocarbon reservoirs and as sources for thermal maturation.
In drawing together a diversity of perspectives on the emplacement of sills, laccoliths and dykes we hope to advance further our understanding of their behaviour.