The 3D fault and vein architecture of strike-slip releasing- and restraining bends: evidence from volcanic-centre-related mineral deposits
-
Published:January 01, 2007
Abstract
High-temperature, volcanic-centre-related hydrothermal systems involve large fluid-flow volumes and are observed to have high discharge rates in the order of 100–400 kg/s. The flows and discharge occur predominantly on networks of critically stressed fractures. The coupling of hydrothermal fluid flow with deformation produces the volumes of veins found in epithermal mineral deposits. Owing to this coupling, veins provide information on the fault–fracture architecture in existence at the time of mineralization. They therefore provide information on the nature of deformation within fault zones, and the relations between different fault sets. The Virginia City and Goldfield mining districts, Nevada, were localized...
Figures & Tables
Contents
Tectonics of Strike-Slip Restraining and Releasing Bends

Restraining and releasing bends are common, but enigmatic features of strike-slip fault systems occurring in all crustal environments and at regional to microscopic scales of observation. Regional-scale restraining bends are sites of mountain building, transpressional deformation and basement exhumation, whereas releasing bends are sites of topographic subsidence, transtensional deformation, basin sedimentation and possible volcanism and economic mineralization. Because restraining and releasing bends often occur as singular self-contained domains of complex deformation, they are appealing natural laboratories for Earth scientists to study fault processes, earthquake seismology, active faulting and sedimentation, fault and fluid-flow relationships, links between tectonics and topography, tectonic and erosional controls on exhumation, and tectonic geomorphology.
This volume addresses the tectonic complexity and diversity of strike-slip restraining and releasing bends with 18 contributions divided into four thematic sections: (1) a topical review of fault bends and their global distribution; (2) bends, sedimentary basins and earthquake hazards; (3) restraining bends, transpressional deformation and basement controls on development; (4) releasing bends, transtensional deformation and fluid flow.