Segment linkage and the state of stress in transtensional transfer zones: field examples from the Pannonian Basin
-
Published:January 01, 2007
Abstract
Metre- to kilometre-scale en échelon strike-slip faults were mapped at the 1:10 000 scale in the Gánt mining area of the Vértes Hills in central Hungary. Good exposures allow detailed observation of brittle structures within the transfer zones of the overstepping fault segments. The strike-slip segments are subvertical to steeply dipping, with a rake of 20–30° accommodating a noticeable dip-slip. Displacement transfer between strike-slip faults was achieved through transtensional relay ramps, which represent a specific type of transfer zone. The breaching faults are oblique-normal or pure normal types. Their strike, dip and the obliquity of their striae change systematically....
Figures & Tables
Contents
Tectonics of Strike-Slip Restraining and Releasing Bends

Restraining and releasing bends are common, but enigmatic features of strike-slip fault systems occurring in all crustal environments and at regional to microscopic scales of observation. Regional-scale restraining bends are sites of mountain building, transpressional deformation and basement exhumation, whereas releasing bends are sites of topographic subsidence, transtensional deformation, basin sedimentation and possible volcanism and economic mineralization. Because restraining and releasing bends often occur as singular self-contained domains of complex deformation, they are appealing natural laboratories for Earth scientists to study fault processes, earthquake seismology, active faulting and sedimentation, fault and fluid-flow relationships, links between tectonics and topography, tectonic and erosional controls on exhumation, and tectonic geomorphology.
This volume addresses the tectonic complexity and diversity of strike-slip restraining and releasing bends with 18 contributions divided into four thematic sections: (1) a topical review of fault bends and their global distribution; (2) bends, sedimentary basins and earthquake hazards; (3) restraining bends, transpressional deformation and basement controls on development; (4) releasing bends, transtensional deformation and fluid flow.