Structural geometry and timing of deformation in the Chainat duplex, Thailand
-
Published:January 01, 2007
Abstract
The Chainat duplex is about 100 km in a north–south direction, and was developed along the predominantly sinistral Mae Ping fault zone, which was active during the Cenozoic. The duplex is manifested as eroded, north–south- and NW–SE-striking outliers of Palaeozoic and Mesozoic rocks rising from the surrounding flat plains of the Central Basin (a Pliocene–Recent post-rift basin). Satellite images, geological maps and magnetic maps have been used to reconstruct the structural geometry of the duplex, which is composed of a series of north–south-striking ridges, bounded to the north and south by NW–SE-striking faults. Overall, the duplex has the geometry...
Figures & Tables
Contents
Tectonics of Strike-Slip Restraining and Releasing Bends

Restraining and releasing bends are common, but enigmatic features of strike-slip fault systems occurring in all crustal environments and at regional to microscopic scales of observation. Regional-scale restraining bends are sites of mountain building, transpressional deformation and basement exhumation, whereas releasing bends are sites of topographic subsidence, transtensional deformation, basin sedimentation and possible volcanism and economic mineralization. Because restraining and releasing bends often occur as singular self-contained domains of complex deformation, they are appealing natural laboratories for Earth scientists to study fault processes, earthquake seismology, active faulting and sedimentation, fault and fluid-flow relationships, links between tectonics and topography, tectonic and erosional controls on exhumation, and tectonic geomorphology.
This volume addresses the tectonic complexity and diversity of strike-slip restraining and releasing bends with 18 contributions divided into four thematic sections: (1) a topical review of fault bends and their global distribution; (2) bends, sedimentary basins and earthquake hazards; (3) restraining bends, transpressional deformation and basement controls on development; (4) releasing bends, transtensional deformation and fluid flow.