Extensional deformation and development of deep basins associated with the sinistral transcurrent fault zone of the Scotia–Antarctic plate boundary
-
Published:January 01, 2007
-
CiteCitation
F. Bohoyo, J. Galindo-Zaldívar, A. Jabaloy, A. Maldonado, J. Rodríguez-Fernández, A. Schreider, E. Suriñach, 2007. "Extensional deformation and development of deep basins associated with the sinistral transcurrent fault zone of the Scotia–Antarctic plate boundary", Tectonics of Strike-Slip Restraining and Releasing Bends, W. D. Cunningham, P. Mann
Download citation file:
- Share
-
Tools
Abstract
The Scotia–Antarctic plate boundary extends along the southern branch of the Scotia Arc, between triple junctions with the former Phoenix plate to the west (57°W) and with the Sandwich plate to the east (30°W). The main mechanism responsible for the present arc configuration is the development of the Scotia and Sandwich plates from 30–35 Ma, related to breakup of the continental connection between South America and the Antarctic Peninsula. The Scotia–Antarctic plate boundary is a very complex tectonic zone, because both oceanic and continental elements are involved. Present-day sinistral transcurrent motion probably began 8 Ma ago. The main active...
Figures & Tables
Contents
Tectonics of Strike-Slip Restraining and Releasing Bends

Restraining and releasing bends are common, but enigmatic features of strike-slip fault systems occurring in all crustal environments and at regional to microscopic scales of observation. Regional-scale restraining bends are sites of mountain building, transpressional deformation and basement exhumation, whereas releasing bends are sites of topographic subsidence, transtensional deformation, basin sedimentation and possible volcanism and economic mineralization. Because restraining and releasing bends often occur as singular self-contained domains of complex deformation, they are appealing natural laboratories for Earth scientists to study fault processes, earthquake seismology, active faulting and sedimentation, fault and fluid-flow relationships, links between tectonics and topography, tectonic and erosional controls on exhumation, and tectonic geomorphology.
This volume addresses the tectonic complexity and diversity of strike-slip restraining and releasing bends with 18 contributions divided into four thematic sections: (1) a topical review of fault bends and their global distribution; (2) bends, sedimentary basins and earthquake hazards; (3) restraining bends, transpressional deformation and basement controls on development; (4) releasing bends, transtensional deformation and fluid flow.