Stepovers that migrate with respect to affected deposits: field characteristics and speculation on some details of their evolution
-
Published:January 01, 2007
Abstract
Traditionally, geologists have viewed strike-slip stepover regions as progressively increasing in structural relief with increasing slip along the principal displacement zones (PDZs). In contrast, some stepover regions may migrate along the strike of the PDZs with respect to deposits affected by them, leaving a ‘wake’ of formerly affected deposits trailing the active stepover region. Such stepovers generate comparatively little structural relief at any given location. For restraining bends of this type, little exhumation and erosion takes place at any given location. Another characteristic of migrating stepovers is local tectonic inversion that may migrate along the strike of the PDZs....
Figures & Tables
Contents
Tectonics of Strike-Slip Restraining and Releasing Bends

Restraining and releasing bends are common, but enigmatic features of strike-slip fault systems occurring in all crustal environments and at regional to microscopic scales of observation. Regional-scale restraining bends are sites of mountain building, transpressional deformation and basement exhumation, whereas releasing bends are sites of topographic subsidence, transtensional deformation, basin sedimentation and possible volcanism and economic mineralization. Because restraining and releasing bends often occur as singular self-contained domains of complex deformation, they are appealing natural laboratories for Earth scientists to study fault processes, earthquake seismology, active faulting and sedimentation, fault and fluid-flow relationships, links between tectonics and topography, tectonic and erosional controls on exhumation, and tectonic geomorphology.
This volume addresses the tectonic complexity and diversity of strike-slip restraining and releasing bends with 18 contributions divided into four thematic sections: (1) a topical review of fault bends and their global distribution; (2) bends, sedimentary basins and earthquake hazards; (3) restraining bends, transpressional deformation and basement controls on development; (4) releasing bends, transtensional deformation and fluid flow.