The NERC Micro to Macro Programme: implications for fluid resource management
-
Published:January 01, 2005
Abstract
The Micro to Macro (μ2M) Programme has been focused on developing understanding of subsurface fluid flows within geological heterogeneities spanning wide ranges of spatial and temporal scales. This paper highlights the opportunities for industries to incorporate recent observations and emerging theories in this field towards improved fluid resource management. The background to, and objectives of, the μ2M Programme are reviewed. Selected results from the projects in the programme are discussed and, where possible, compared with evidence from industrial field data. Some conclusions and recommendations for future practice in reservoir characterization are made. For example, there is currently very little...
Figures & Tables
Contents
Understanding the Micro to Macro Behaviour of Rock–Fluid Systems

Understanding how fluids flow through though rocks is very important in a number of fields. Almost all of the world's oil and gas are produced from underground reservoirs. Knowledge of how they got where they are, what keeps them there and how they migrate through the rock is very important in the search for new resources, as well as for maximising the extraction of as much of the contained oil/gas as possible. Similar understanding is important for managing groundwater resources and for predicting how hazardous or radioactive waste or carbon dioxide will behave if stored or disposed of underground. Unravelling the complex behaviour of fluids as they flow through rock is difficult, but important. We cannot see through rock, so we need to predict how and where fluids flow. Understanding the type of rock, its porosity, the character and pattern of fractures within it and how fluids flows through it are important. Some contributors to this volume have been trying to understand real rocks in real situations and others have been working on computer models and laboratory simulations. Put together, these approaches have yielded very useful results, many of which are discussed in this volume.