The low-flow channel morphology of Boulder Creek is characterized by a well-developed pool-and-riffle pattern. The riffles consist of accumulations of basaltic boulders deposited from upstream source areas during extremely large flows. Paleoflood water-surface profiles defined by high-water indicators such as slack-water sediments and silt lines indicate that discharges of up to 400±50 m3/s have affected the lower reaches of this bedrock stream system. Stratigraphic relationships and archaeologic and radiometric age constraints indicate that at least four large-magnitude, low-frequency flow events have occurred within the past 500 to 1,000 radiocarbon years B.P.

Step-backwater hydraulic reconstructions of these large flows suggest that the positions of the boulder-comprised riffles are controlled by spatial variations in large-flow stream power. Boulder deposition occurs where channel stream power drops below critical-power thresholds necessary for boulder transport. High-discharge stream-power minima occur in reaches immediately upstream of canyon bends and constrictions and downstream of canyon expansions. The low-flow riffles occur at these sites. Comparison of calculated stream-power values and measured boulder sizes with established coarse-particle transport relationships indicates that a 400-m3/s flow is approximately the minimum discharge competent to affect this pool-and-riffle pattern.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page PDF preview
You do not have access to this content, please speak to your institutional administrator if you feel you should have access.