Microdiamonds ∼200 μm in size, occurring in ophiolitic chromitites and peridotites, have been reported in recent years. Owing to their unusual geological formation, there are several debates about their origin. We studied 30 microdiamonds from 3 sources: (1) chromitite ore in Luobusa, Tibet; (2) peridotite in Luobusa, Tibet; and (3) chromitite ore in Ray-Iz, polar Ural Mountains, Russia. They are translucent, yellow to greenish-yellow diamonds with a cubo-octahedral polycrystalline or single crystal with partial cubo-octahedral form. Infrared (IR) spectra revealed that these diamonds are type Ib (i.e., diamonds containing neutrally charged single substitutional nitrogen atoms, Ns0, known as the C center) with unknown broad bands observed in the one-phonon region. They contain fluid inclusions, such as water, carbonates, silicates, hydrocarbons, and solid CO2. We also identified additional microinclusions, such as chromite, magnetite, feldspar (albite), moissanite, hematite, and magnesiochromite, using a Raman microscope. Photoluminescence (PL) spectra measured at liquid nitrogen temperature suggest that these diamonds contain nitrogen-vacancy, nickel, and H2 center defects. We compare them with high-pressure–high-temperature (HPHT) synthetic industrial diamond grits. Although there are similarities between microdiamonds and HPHT synthetic diamonds, major differences in the IR, Raman, and PL spectra confirm that these microdiamonds are of natural origin. Spectral characteristics suggest that their geological formation is different but unique compared to that of natural gem-quality diamonds. Although these microdiamonds are not commercially important, they are geologically important in that they provide an understanding of a new diamond genesis.