Early Jurassic granitoids are widespread in the Lesser Xing’an–Zhangguangcai Ranges, providing excellent targets to understand the late Paleozoic to early Mesozoic tectonic framework and evolution of Northeast China, especially the Jiamusi block and its related structural belts. In this paper, we present new geochronological, geochemical, and isotopic data from the granitoids in the Lesser Xing’an–Zhangguangcai Ranges to constrain the early Mesozoic tectonic evolution of the Mudanjiang Ocean between the Jiamusi and Songnen blocks. Our results show that the granitic intrusions in the Lesser Xing’an–Zhangguangcai Ranges are mainly composed of syenogranite, monzogranite, granodiorite, and tonalite, which have crystallization ages from 196 to 181 Ma. Their geochemical features indicate that these Jurassic intrusions are all high-K calc-alkaline I-type granites with metaluminous to weakly peraluminous compositions. These granitoids are characterized by enrichments in large ion lithophile elements (e.g., Ba, Th, U) and light rare earth elements and depletions in high field strength elements (e.g., Nb and Ta) and heavy rare earth elements, which are typical for continental arc–type granites. The sources of these granitoids were likely derived from juvenile Mesoproterozoic to Neoproterozoic crustal materials (e.g., metabasaltic rocks). Integrated with data from regional coeval magmatism, metamorphism, metallogeny, and structure, our new data suggest that the granitoids in the Lesser Xing’an–Zhangguangcai Ranges were probably formed in an active continental margin setting, which fits well in our previous model of Early Jurassic westward subduction of the Mudanjiang Ocean between the Jiamusi and Songnen blocks.

Gold Open Access: This paper is published under the terms of the CC-BY-NC license.
This content is PDF only. Please click on the PDF icon to access.