Existing structural models of the Himalayan fold-thrust belt in Kumaun, northwest India, are based on a tectono-stratigraphy that assigns different stratigraphy to the Ramgarh, Berinag, Askot, and Munsiari thrusts and treats the thrusts as separate structures. We reassess the tectono-stratigraphy of Kumaun, based on new and existing U-Pb zircon ages and whole-rock Nd isotopic values, and present a new structural model and deformation history through kinematic analysis using a balanced cross section. This study reveals that the rocks that currently crop out as the Ramgarh, Berinag, Askot, and Munsiari thrust sheets were part of the same, once laterally continuous stratigraphic unit, consisting of Lesser Himalayan Paleoproterozoic granitoids (ca. 1850 Ma) and metasedimentary rocks. These Paleoproterozoic rocks were shortened and duplexed into the Ramgarh-Munsiari thrust sheet and other Paleoproterozoic thrust sheets during Himalayan orogenesis. Our structural model contains a hinterland-dipping duplex that accommodates ∼541–575 km or 79%–80% of minimum shortening between the Main Frontal thrust and South Tibetan Detachment system. By adding in minimum shortening from the Tethyan Himalaya, we estimate a total minimum shortening of ∼674–751 km in the Himalayan fold-thrust belt. The Ramgarh-Munsiari thrust sheet and the Lesser Himalayan duplex are breached by erosion, separating the Paleoproterozoic Lesser Himalayan rocks of the Ramgarh-Munsiari thrust into the isolated, synclinal Almora, Askot, and Chiplakot klippen, where folding of the Ramgarh-Munsiari thrust sheet by the Lesser Himalayan duplex controls preservation of these klippen. The Ramgarh-Munsiari thrust carries the Paleoproterozoic Lesser Himalayan rocks ∼120 km southward from the footwall of the Main Central thrust and exposed them in the hanging wall of the Main Boundary thrust. Our kinematic model demonstrates that propagation of the thrust belt occurred from north to south with minor out-of-sequence thrusting and is consistent with a critical taper model for growth of the Himalayan thrust belt, following emplacement of midcrustal Greater Himalayan rocks. Our revised stratigraphy-based balanced cross section contains ∼120–200 km greater shortening than previously estimated through the Greater, Lesser, and Subhimalayan rocks.

Gold Open Access: This paper is published under the terms of the CC-BY-NC license.
This content is PDF only. Please click on the PDF icon to access.