The origin of high-pressure granulites in the south Rae craton and Snowbird tectonic zone (STZ) is highly enigmatic. Current models for their formation and exhumation envisage continental collision at 2.55 Ga and intracratonic orogenesis at 1.9 Ga, or collision and exhumation at ca. 1.9 Ga. As an attempt to reconcile these disparate models, we conducted a regional and detailed mapping program along a geophysical discontinuity 100 km west of the STZ within the south Rae craton of the Northwest Territories, Canada. This work presents the discovery of a new crustal-scale shear zone, the Wholdaia Lake shear zone (WLsz), which deformed and transposed host rocks into a 20-km-wide and 300-km-long ductile high-strain zone. U-Pb zircon geochronology was utilized to establish host-rock crystallization ages, timing of deposition of metasedimentary rocks, and age constraints of metamorphism and ductile shearing. Hanging-wall metasedimentary rocks have a new depositional range of 1.98–1.93 Ga and contain abundant metamorphic zircon at 1.91 Ga. The protoliths of the footwall mafic granulite orthogneisses crystallized at 2.6 Ga and were metamorphosed at 1.9 Ga, which extends the known footprint of 1.9 Ga metamorphism 100 km west of the STZ. During and after 1.9 Ga metamorphism, the WLsz began progressively exhuming footwall rocks in three distinct stages, associated with (1) normal-oblique shearing at high-pressure granulite-facies conditions, (2) normal-oblique shearing accompanied by mylonitization at amphibolite-facies conditions, and (3) normal-oblique shearing with ultramylonite development at amphibolite- to greenschist-facies conditions. Ductile shearing was waning by 1.86 Ga, based on ages obtained from late syn- to postkinematic crosscutting dikes. Collectively, the WLsz in concert with other regional structures aided both extensional and thrust-sense exhumation of a large high-grade terrane at 1.9 Ga in the south Rae craton.

Gold Open Access: This paper is published under the terms of the CC-BY-NC license.