On Mars, phyllosilicate (“clay”) minerals are often associated with older terrains, and sulfate minerals are associated with younger terrains, and this dichotomy is taken as evidence that Mars’ surface dried up over time. Therefore, in situ investigation of the Mount Sharp strata in Gale crater, which record a shift from dominantly clay-bearing to sulfate-bearing minerals, as seen in visible−near-infrared orbital reflectance spectra, is a key science objective for the Mars Science Laboratory (MSL) Curiosity rover mission. Here, we present regional (orbiter-based) and in situ (rover-based) evidence for a low-angle erosional unconformity that separates the lacustrine and marginal lacustrine deposits of the Carolyn Shoemaker formation from the dominantly eolian deposits of the lower Mirador formation within the orbitally defined clay-sulfate transition region. The up-section record of wetter (Carolyn Shoemaker formation) to drier (lower Mirador formation) depositional conditions is accompanied by distinct changes in diagenesis. Clay minerals occur preferentially within the Carolyn Shoemaker formation and are absent within the lower members of the Mirador formation. At and above the proposed unconformity, strata are characterized by an increase in diagenetic nodules enriched in X-ray amorphous Mg-sulfate. Early clay formation in the Carolyn Shoemaker formation may have created a hydraulic barrier such that later migrating magnesium- and sulfur-rich fluids accumulated preferentially within the lower members of the Mirador formation. The proposed unconformity may have also acted as a fluid conduit to further promote Mg-sulfate nodule formation at the Carolyn Shoemaker−Mirador formation boundary. These results confirm an association of the clay-sulfate transition with the drying of depositional environments, but they also suggest that at least some orbital sulfate signatures within the region are not time-congruent with the environmental signals extracted from primary sedimentology. Our findings highlight that complex interactions among primary depositional environment, erosion, and diagenesis contribute to the transition in clay-sulfate orbital signatures observed in the stratigraphy of Mount Sharp.
Research Article|
June 28, 2024
Early Publication
Geological context and significance of the clay-sulfate transition region in Mount Sharp, Gale crater, Mars: An integrated assessment based on orbiter and rover data
Melissa J. Meyer;
Melissa J. Meyer
1
Department of Earth, Environmental, and Planetary Sciences, Brown University, 324 Brook Street, Box 1846, Providence, Rhode Island 02912, USA
Search for other works by this author on:
Ralph E. Milliken;
Ralph E. Milliken
1
Department of Earth, Environmental, and Planetary Sciences, Brown University, 324 Brook Street, Box 1846, Providence, Rhode Island 02912, USA
Search for other works by this author on:
Kathryn M. Stack;
Kathryn M. Stack
2
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, USA
Search for other works by this author on:
Lauren A. Edgar;
Lauren A. Edgar
3
Astrogeology Science Center, U.S. Geological Survey, 2255 N. Gemini Drive, Flagstaff, Arizona 86001, USA
Search for other works by this author on:
Elizabeth B. Rampe;
Elizabeth B. Rampe
4
Astromaterials Research and Exploration Science Division, National Aeronautics and Space Administration (NASA) Johnson Space Center, 2101 NASA Parkway, Houston, Texas 77059, USA
Search for other works by this author on:
Madison L. Turner;
Madison L. Turner
5
Department of Earth and Planetary Sciences, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, USA
Search for other works by this author on:
Kevin W. Lewis;
Kevin W. Lewis
5
Department of Earth and Planetary Sciences, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, USA
Search for other works by this author on:
Edwin S. Kite;
Edwin S. Kite
6
Department of Geophysical Sciences, University of Chicago, 5734 S. Ellis Avenue, Chicago, Illinois 60637, USA
Search for other works by this author on:
Gwénaël Caravaca;
Gwénaël Caravaca
7
Institut de Recherche en Astrophysique et Planétologie (IRAP), Unité Mixte de Recherche (UMR) 5277, Centre National de la Recherche Scientifique (CNRS), Centre National d’Etudes Spatiales (CNES), Université Paul Sabatier Toulouse III, 9 Avenue du Colonel Roche, 31400 Toulouse, France
Search for other works by this author on:
Ashwin R. Vasavada;
Ashwin R. Vasavada
2
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, USA
Search for other works by this author on:
William E. Dietrich;
William E. Dietrich
8
Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California 94709, USA
Search for other works by this author on:
Alexander B. Bryk;
Alexander B. Bryk
8
Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California 94709, USA
Search for other works by this author on:
Olivier Gasnault;
Olivier Gasnault
7
Institut de Recherche en Astrophysique et Planétologie (IRAP), Unité Mixte de Recherche (UMR) 5277, Centre National de la Recherche Scientifique (CNRS), Centre National d’Etudes Spatiales (CNES), Université Paul Sabatier Toulouse III, 9 Avenue du Colonel Roche, 31400 Toulouse, France
Search for other works by this author on:
Stéphane Le Mouélic;
Stéphane Le Mouélic
9
Laboratoire de Planétologie et Géosciences, CNRS UMR 6112, Nantes Université, Université Angers, Le Mans Université, 44000 Nantes, France
Search for other works by this author on:
Christina H. Seeger;
Christina H. Seeger
10
Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, USA
Search for other works by this author on:
Rachel Y. Sheppard
Rachel Y. Sheppard
11
Planetary Science Institute, 1700 East Fort Lowell, Tucson, Arizona 85719, USA12
Institut d’Astrophysique Spatiale, Université Paris-Saclay, Bâtiment 121, 91405 Orsay, France
Search for other works by this author on:
Melissa J. Meyer
1
Department of Earth, Environmental, and Planetary Sciences, Brown University, 324 Brook Street, Box 1846, Providence, Rhode Island 02912, USA
Ralph E. Milliken
1
Department of Earth, Environmental, and Planetary Sciences, Brown University, 324 Brook Street, Box 1846, Providence, Rhode Island 02912, USA
Kathryn M. Stack
2
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, USA
Lauren A. Edgar
3
Astrogeology Science Center, U.S. Geological Survey, 2255 N. Gemini Drive, Flagstaff, Arizona 86001, USA
Elizabeth B. Rampe
4
Astromaterials Research and Exploration Science Division, National Aeronautics and Space Administration (NASA) Johnson Space Center, 2101 NASA Parkway, Houston, Texas 77059, USA
Madison L. Turner
5
Department of Earth and Planetary Sciences, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, USA
Kevin W. Lewis
5
Department of Earth and Planetary Sciences, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, USA
Edwin S. Kite
6
Department of Geophysical Sciences, University of Chicago, 5734 S. Ellis Avenue, Chicago, Illinois 60637, USA
Gwénaël Caravaca
7
Institut de Recherche en Astrophysique et Planétologie (IRAP), Unité Mixte de Recherche (UMR) 5277, Centre National de la Recherche Scientifique (CNRS), Centre National d’Etudes Spatiales (CNES), Université Paul Sabatier Toulouse III, 9 Avenue du Colonel Roche, 31400 Toulouse, France
Ashwin R. Vasavada
2
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, USA
William E. Dietrich
8
Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California 94709, USA
Alexander B. Bryk
8
Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California 94709, USA
Olivier Gasnault
7
Institut de Recherche en Astrophysique et Planétologie (IRAP), Unité Mixte de Recherche (UMR) 5277, Centre National de la Recherche Scientifique (CNRS), Centre National d’Etudes Spatiales (CNES), Université Paul Sabatier Toulouse III, 9 Avenue du Colonel Roche, 31400 Toulouse, France
Stéphane Le Mouélic
9
Laboratoire de Planétologie et Géosciences, CNRS UMR 6112, Nantes Université, Université Angers, Le Mans Université, 44000 Nantes, France
Christina H. Seeger
10
Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, USA
Rachel Y. Sheppard
11
Planetary Science Institute, 1700 East Fort Lowell, Tucson, Arizona 85719, USA12
Institut d’Astrophysique Spatiale, Université Paris-Saclay, Bâtiment 121, 91405 Orsay, France
Publisher: Geological Society of America
Received:
25 Sep 2023
Revision Received:
18 Apr 2024
Accepted:
28 May 2024
First Online:
28 Jun 2024
Online ISSN: 1943-2674
Print ISSN: 0016-7606
© 2024 Authors
GSA Bulletin (2024)
Article history
Received:
25 Sep 2023
Revision Received:
18 Apr 2024
Accepted:
28 May 2024
First Online:
28 Jun 2024
Citation
Melissa J. Meyer, Ralph E. Milliken, Kathryn M. Stack, Lauren A. Edgar, Elizabeth B. Rampe, Madison L. Turner, Kevin W. Lewis, Edwin S. Kite, Gwénaël Caravaca, Ashwin R. Vasavada, William E. Dietrich, Alexander B. Bryk, Olivier Gasnault, Stéphane Le Mouélic, Christina H. Seeger, Rachel Y. Sheppard; Geological context and significance of the clay-sulfate transition region in Mount Sharp, Gale crater, Mars: An integrated assessment based on orbiter and rover data. GSA Bulletin 2024; doi: https://doi.org/10.1130/B37355.1
Download citation file: