Understanding how heterogeneous rock volumes deform is crucial in structural geology, and several studies have addressed this issue by focusing on the impact that the mechanical stratigraphy of a layered stratigraphic sequence has on deformation. However, mechanical layering can also develop subparallel to fault surfaces within the upper crust, and how these anisotropies affect subsequent deformation has been much less explored. This work addresses this aspect by structurally and mechanically characterizing superposed fault zones developed in Triassic dolostones that crop out in the fold-and-thrust belt of the southern Apennines. We investigate how layering associated with an early, reservoir-scale, normal fault zone (F1), inherited from Upper Triassic−Lower Jurassic pre-orogenic extension, influenced the deformation mechanisms and the geometry of younger strike-slip faults (F2) that formed at an angle to it in the early Pliocene in association with out-of-sequence tectonics during the Apennine orogeny. We combined field surveys and laboratory analyses using a multiscalar and multimethodological approach. Meso- and microstructural observations and geomechanical, laboratory, and in situ tests were employed to describe fault rock attributes. We found that the architecture of the F1 normal fault primarily consists of four tens-of-meters-thick, subparallel fault rock units. They have a cataclastic core, and are bounded in the hanging wall by cemented micromosaic breccia, and in the footwall by high-strain and low-strain fault rocks. The younger F2 strike-slip faults developed alternatively as either cataclastic shear bands or compaction bands and occur in either localized or anastomosing geometries. By combining data, we demonstrate that the particle size distribution, porosity, and rock strength of the fault rock units related to older normal faults are the main controls on the deformation mechanisms (i.e., cataclasis versus compaction) and geometry (i.e., localized anastomosed) of the subsequent strike-slip faults. Our study highlights that preexisting highly porous fault rocks favor the development of compaction deformation bands. Conversely, low rock strength facilitates the formation of discrete and diffuse slip surfaces. These results can have significant implications for assessing fluid flow in multifaulted dolomite reservoirs.
Skip Nav Destination
Article navigation
Article Contents
Research Article|
December 06, 2024
Early Publication
Deformation mechanisms and geometries of superposed fault zones in dolostones
Renato Diamanti;
Renato Diamanti
1
Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse (DiSTAR), Università di Napoli Federico II, Via Cupa Nuova Cintia, 21, 80126 Napoli, Italy2
Dipartimento di Geoscienze, Università Degli Studi di Padova, Via Giovanni Gradenigo, 6, 35131 Padova, Italy
Search for other works by this author on:
Stefano Vitale;
Stefano Vitale
1
Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse (DiSTAR), Università di Napoli Federico II, Via Cupa Nuova Cintia, 21, 80126 Napoli, Italy
Search for other works by this author on:
Giacomo Russo;
Giacomo Russo
1
Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse (DiSTAR), Università di Napoli Federico II, Via Cupa Nuova Cintia, 21, 80126 Napoli, Italy
Search for other works by this author on:
Enza Vitale;
Enza Vitale
1
Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse (DiSTAR), Università di Napoli Federico II, Via Cupa Nuova Cintia, 21, 80126 Napoli, Italy
Search for other works by this author on:
Giovanni Camanni
Giovanni Camanni
1
Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse (DiSTAR), Università di Napoli Federico II, Via Cupa Nuova Cintia, 21, 80126 Napoli, Italy
Search for other works by this author on:
Renato Diamanti
1
Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse (DiSTAR), Università di Napoli Federico II, Via Cupa Nuova Cintia, 21, 80126 Napoli, Italy2
Dipartimento di Geoscienze, Università Degli Studi di Padova, Via Giovanni Gradenigo, 6, 35131 Padova, Italy
Stefano Vitale
1
Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse (DiSTAR), Università di Napoli Federico II, Via Cupa Nuova Cintia, 21, 80126 Napoli, Italy
Giacomo Russo
1
Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse (DiSTAR), Università di Napoli Federico II, Via Cupa Nuova Cintia, 21, 80126 Napoli, Italy
Enza Vitale
1
Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse (DiSTAR), Università di Napoli Federico II, Via Cupa Nuova Cintia, 21, 80126 Napoli, Italy
Giovanni Camanni
1
Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse (DiSTAR), Università di Napoli Federico II, Via Cupa Nuova Cintia, 21, 80126 Napoli, Italy
Publisher: Geological Society of America
Received:
30 Dec 2023
Revision Received:
02 Oct 2024
Accepted:
23 Oct 2024
First Online:
06 Dec 2024
Online ISSN: 1943-2674
Print ISSN: 0016-7606
© 2024 Geological Society of America
GSA Bulletin (2024)
Article history
Received:
30 Dec 2023
Revision Received:
02 Oct 2024
Accepted:
23 Oct 2024
First Online:
06 Dec 2024
Citation
Renato Diamanti, Stefano Vitale, Giacomo Russo, Enza Vitale, Giovanni Camanni; Deformation mechanisms and geometries of superposed fault zones in dolostones. GSA Bulletin 2024; doi: https://doi.org/10.1130/B37534.1
Download citation file:
You could not be signed in. Please check your email address / username and password and try again.