The tristate area of Iowa, Illinois, and Missouri contains some of the best-exposed Mississippian strata in the world, including the type area for the Mississippian subsystem, across a broad carbonate platform known as the Burlington shelf. Strata have been mapped as thinnest along the central middle shelf and thickening both up-ramp and down-ramp, forming a complex dumbbell-like stratigraphic pattern rather than a simple clinoform geometry thinning into the basin. Additionally, two significant hiatuses at the Devonian-Carboniferous boundary and Kinderhookian-Osagean boundary greatly complicate stratigraphic correlations across the region. As a result, the precise temporal relationships between strata deposited across the region remain uncertain.

Two large biogeochemical events occurred during this interval that provide facies-independent chronostratigraphic tools: the Hangenberg event, which marks the Devonian-Carboniferous boundary, and the Kinderhookian-Osagean boundary event. To target these events, we collected 66 conodont samples and 1005 carbonate carbon isotope samples from three cores and three outcrops and integrated the results with existing data from key facies/depth transitions across the Burlington shelf. Our new data demonstrate a complex relationship among complementary stratigraphic thicknesses, where the Devonian-Carboniferous boundary interval is thin or absent in the up-ramp inner-shelf setting and preserved in a significantly expanded interval in the central to distal middle-shelf deposits of southeast Iowa and northeast Missouri. However, the overlying Kinderhookian-Osagean boundary interval is not preserved in this down-ramp setting but is preserved in significantly expanded strata in the up-ramp inner-shelf setting of central Iowa.

This content is PDF only. Please click on the PDF icon to access.
You do not have access to this content, please speak to your institutional administrator if you feel you should have access.