The long-conceived idea of the glacial origin of Blaini diamictite of Lesser Himalayan Neoproterozoic succession reached its maxima when the diamictites and capping pink limestone were attributed to the Neoproterozoic Snowball Earth event and its aftermath, respectively. Occurrences of diamictite-limestone association in two different levels have also been correlated with the Sturtian and Marinoan glaciations. Critical review, however, reveals that the interpretations of the glacial origin of diamictites are not well founded. The diamictite-limestone association, which occurs at the lower part of a thick, light brown shale unit and laterally grades into light brown shale, primarily indicates episodic surge events in an otherwise tranquil condition favorable for hemipelagic sedimentation. The lithology, bed geometry, internal organization, and disposition of the diamictite bodies suggest deposition of debris flow fan lobes along fault scarps in a rift setting. Emplacement of subaqueous debris flows is indicated by the associated deposits of entrained turbidity currents. The limestone also bears the signature of claciturbidites. The appearance of diamictite bodies and associated limestone in two distinct levels is not a stratigraphic disposition; on the contrary, the deposits were dislocated and repeated by two successive regional thrust faults. The Chemical Index of Alteration (CIA) values of the light brown shale and the matrix of the diamictites indicate that these sediments formed through prolonged subaerial weathering. The events leading up to development of the rift system and evidence of prolonged weathering within the basin-fill sediments are consistent with supercontinental break up, the prologue of Snowball Earth.

This content is PDF only. Please click on the PDF icon to access.
You do not currently have access to this article.