The evolution of the South China continental crust and its linkage to the assembly and rifting of eastern Gondwana are key issues in the understanding of the early Paleozoic evolution of eastern Asia. We report U-Pb zircon ages and geochemical and Lu-Hf isotopic data for the South Fufang and Yingshang granitoids and the Mayuan diabases from the Wuyishan of eastern South China. The zircons yielded U-Pb ages of ca. 414−404 and ca. 409−401 Ma for the granitoids and diabases, respectively. Petrographic and geochemical features indicate that the granitoids are peraluminous A-type granites, expressed by high Ga/Al ratios and high Zr, Nb, Ce, Y, and rare earth element contents. They show negative zircon εHf(t) values (−15.4 to −5.8), consistent with the derivation from a crustal source. The granitoids likely originated from partial melting of dry granulite residues in the lower crust. The diabases show depletion in Ti, and negative correlations between FeOt and Mg#, and SiO2 and TiO2/FeOt, reflecting clinopyroxene, olivine, and Fe-Ti oxide fractionation. Their negative zircon εHf(t) values (−4.5 to −0.4) indicate an ancient enriched-mantle origin. The diabases likely originated from partial melting of a sub-continental lithospheric mantle. We interpret these A-type granitoids and diabases as post-orogenic, formed during extensional collapse of thickened crust. Their generation indicates that South China experienced crustal extension during the Early Devonian. The extension occurred coevally with global rifting that led to the separation of the continental blocks of eastern Asia from eastern Gondwana, which was associated with the Early Devonian opening of the paleo−Tethys Ocean.

This content is PDF only. Please click on the PDF icon to access.
You do not currently have access to this article.