Oxygen-isotope analyses of a 37-km2 exposure of Precambrian granite adjacent to the Miocene Lake City caldera are used to document interactions with a 23-m.y.-old meteoric-hydrothermal system established within the caldera. The granite δ18O values range from +0.7 to +9.2, all lower than for the original granite (∼ +9.5), indicating pervasive exchange with a low-18O fluid. Primary muscovite exchanged oxygen with the fluid faster than did quartz, but much more slowly than did K-feldspar, and primary biotites were altered to variable mixtures of low-18O chlorite and sericite. The granite was altered over a wide range of water/rock ratios in two distinct regimes, a sericite alteration regime and a chlorite alteration regime. Granite in the highly faulted Eureka graben exhibits the lowest whole-rock δ8O values and the highest degree of biotite alteration; this zone was a main channel for fluid flow through the granite. Groups of samples (3) are defined relative to the graben axis: (1) a “graben group” with whole-rock δ18O=0 to +4; (2) an intermediate group (5.5 to 9.0 km from the graben axis) with δ18O=+2 to +8 that shows a positive correlation between sample elevation and whole-rock δ18O; (3) a distal group (>9.0 km) with δ18O=+6 to +9 that also shows a positive correlation between elevation and δ18O. These δ18O-elevation trends (∼0.7 per mil/100 m) imply a systematic vertical thermal gradient in the near-surface portions of the granite during hydrothermal activity, as well as a lateral gradient in water/rock ratio outward from the graben. A subgroup of samples within the intermediate group is from a postcaldera structural dome, and the δ18O-elevation trends in the granite are offset by the uplift.

First Page Preview

First page PDF preview
You do not have access to this content, please speak to your institutional administrator if you feel you should have access.