China is principally a part of the Eurasian plate, but the margins of the Indian and Philippine Sea plates are involved in the Himalayas and in the Coastal Range of Taiwan, respectively. Within the Eurasian plate, the Cathaysian paleoplate is separated from the Angaraian paleoplate by the Junggar-Hegen suture, which contains Paleozoic ophiolites and rare blueschists. The three microplates of the Cathaysian paleoplate consist of Precambrian cratons and/or Phanerozoic accretionary fold belts. These coalesced Precambrian cratons record at least six stages of intense orogeny before cratonization. The Paleozoic to Cenozoic accretionary fold belts of China can be correlated with similar events now found in west Pacific-, Andean-, and Atlantic-type active continental margins. Ophiolites occupying many of these tectonic zones provide evidence for the age and igneous history of oceanic crust formed during the Paleozoic to Cenozoic. The presence of blueschist in some of these Chinese sutures reveals evidence of large-scale subduction and tectonic exhumation during consolidation of the Eurasian plate. Cenozoic collision of the Eurasian and Indian plates produced deformation and uplift of the Himalayas, strongly influencing the tectonics of western China. In contrast, Mesozoic-Tertiary evolution of eastern China is typical basin-range geology, similar to that of the western United States, which included development of deep sedimentary basins along with calc-alkaline plutonic and volcanic activity associated with crustal thinning and high heat flow. The complicated tectonic evolution of China is greatly illuminated by the presence of ophiolites and blueschists in Proterozoic to Tertiary convergent boundaries. These petrotectonic assemblages provide evidence of an extremely mobile history of plate movement in China.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page PDF preview
You do not currently have access to this article.