Abstract

A detailed mineralogical and chemical investigation has been made of shale cuttings from a well (Case Western Reserve University Gulf Coast 6) in Oligocene-Miocene sediment of the Gulf Coast of the United States. The <0.1-, 0.1- to 0.5-, 0.5- to 2-, 2- to 10-, and >10-µm fractions from the 1,250- to 5,500-m stratigraphic interval were analyzed by x-ray diffraction. Major mineralogic changes with depth take place over the interval 2,000 to 3,700 m, after which no significant changes are detectable. The most abundant mineral, illite/smectite, undergoes a conversion from less than 20 percent to about 80 percent illite layers over this interval, after which the proportion of illite layers remains constant. Over the same interval, calcite decreases from about 20 percent of the rock to almost zero, disappearing from progressively larger size fractions with increasing depth; potassium feldspar (but not albite) decreases to zero; and chlorite appears to increase in amount. Variations in the bulk chemical composition of the shale with depth show only minor changes, except for a marked decrease in CaO concomitant with the decrease in calcite. By contrast, the <0.1-µm fraction (virtually pure illite/smectite) shows a large increase in K2O and Al2O3 and a decrease in SiO2 The atomic proportions closely approximate the reaction smectite + Al+3 + K+ = illite + Si+4. The potassium and aluminum appear to be derived from the decomposition of potassium feldspar (and mica?), and the excess silicon probably forms quartz. We interpret all the major mineralogical and chemical changes as the response of the shale to burial metamorphism and conclude that the shale acted as a closed system for all components except H2O, CaO, Na2O, and CO2. Compositional changes in the shale as a function of metamorphic grade closely parallel compositional changes in shale as a function of geologic age.

First Page Preview

First page PDF preview
You do not currently have access to this article.