The Paleozoic construction of Pangea advanced southwestward from the Appalachian system to the Marathon fold-and-thrust belt in west Texas and progressively closed a remnant ocean basin between Laurentia and Gondwana. The resulting collisional orogen was a potential driver of Ancestral Rocky Mountain tectonism and impacted continental-scale sediment routing. New detrital zircon U-Pb geochronologic and heavy mineral provenance data from Ordovician−Pennsylvanian strata in the Marathon fold-and-thrust belt, and Permian strata in the Guadalupe Mountains of west Texas record changes in sediment provenance during the tectonic development of southwestern Laurentia and the Delaware Basin. In the Marathon fold-and-thrust belt, Ordovician rocks (Woods Hollow and Marathon Formations) record peri-Gondwanan sediment sources prior to continent collision. Syncollisional Mississippian and Pennsylvanian rocks (Tesnus, Haymond, Gaptank Formations) record contributions from distal Appalachian sources, recycled material from the active continental suture, and volcanic arc material from Gondwana. Near the Guadalupe Mountains, postcollisional Permian strata (Delaware Mountain Group) from the northern Delaware Basin margin suggest a dominantly southern catchment that was sourced from the deforming suture and Gondwanan arc. The results demonstrate that both plates and the active suture zone were sources for the siliciclastic wedge, but their proportions differed through time. These results also suggest that the delay between initial late Mississippian suturing in the Marathon region and increased mid-Permian siliciclastic deposition into the northern Delaware Basin may have been linked to a southward catchment expansion that integrated the collisional belt and southern volcanic arc into a broadly north-directed sediment dispersal system.

This content is PDF only. Please click on the PDF icon to access.
You do not currently have access to this article.