Carbonatite hosts the most important rare earth resources in the world, but the precise timing, ore-forming history, and mechanism of rare earth mineralization in carbonatite systems are still in debate. Here, we report a rare corona texture of monazite-allanite-fluorapatite from the Huangjiagou carbonatite in the Lesser Qinling of central China, and demonstrate that the U-Th-Pb dating, trace elements, and Sr-Nd isotopes of these minerals in the corona are useful tools to unravel multiple-stage events for rare earth element (REE) mineralization and mobilization. The first mineralization event took place at ca. 219 Ma as revealed by the monazite U-Pb age, the same as regional carbonatite forming ages, but the Th-Pb age has been disturbed, which shows a negative correlation with Th contents. The second mineralization event occurred at ca. 128 Ma, as revealed by in situ U-Pb dating of allanite, coeval with the intrusions of neighboring I-type granite. The initial Sr-Nd isotope ratios of allanite show a downtrend from the center to the rim of monazite-allanite-apatite coronas to approach the ratios of neighboring granite, indicating an increasing effect by the metasomatism of magmatic-hydrothermal fluids during the growth of these REE-mineral coronas. Therefore, a two-episode REE mineralization was recognized with the replacement of ca. 219 Ma monazite by ca. 128 Ma allanite-apatite coronas on the function of magmatic-hydrothermal fluid metasomatism, and this process accompanies the disturbance of Th/Pb geochronology in monazite. Allanite as the product of monazite dissolution can represent the later-stage REE mineralization tracing the REE reworking processes under the hydrothermal conditions in carbonatite systems. Our study highlights the implication of monazite-allanite-fluorapatite coronas on the REE remobilization and mineralization in carbonatite systems.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.