It has been proposed that the northeastern Tibetan Plateau (NETP) was the most recent plateau sub-region to gain elevation, leading to profound environmental changes in northern East Asia around the mid-Pliocene (ca. 3.6 Ma). Alternatively, environmental changes in the region have been linked to ongoing global cooling and glacial intensification after 3.3 Ma. Here, we test these hypotheses using Plio-Pleistocene estimates of paleotemperatures and paleoelevations in the NETP derived from oxygen and carbon stable isotopic composition (n = 792) and clumped isotope measurements (n = 32) of carbonates from a Lake Qinghai Basin sediment core, eastern NETP. From 5 to 2 Ma, basinal mean annual air temperatures (MAATs) decreased by 4.9 ± 2.8 °C at rates of 1.6 °C ± 0.5 °C/myr, concurrently with regional and global cooling. However, the largest MAAT decline occurs between ca. 4.8–3.7 Ma (4.1 ± 3.2 °C) and ca. 3.4–2.0 Ma (−0.3 ± 2.8 °C) and may correspond with an elevation change of 1.0 ± 1.0 km at 3.6 Ma, coincident with tectonic activity in the Lake Qinghai Basin and several other basins in the NETP and its foreland. Taken together, these results suggest a combination of global cooling and a small magnitude of surface uplift (<1 km) at ca. 3.6 Ma may have contributed to the regional evolution of climate in the Lake Qinghai Basin.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.