Garnet-bearing peridotites commonly occur in the deeper parts of mature or thickened oceanic lithosphere, and are rarely exhumed and emplaced onto the seafloor. The Purang ophiolitic peridotites in south Tibet contain rare symplectite pseudomorphs after garnet, offering a unique window into the still poorly understood evolution of the deep oceanic lithosphere. Here, integrated petrologic and Os-Li isotopic data are used to constrain the evolution and dynamics of emplacement for these garnet peridotite protoliths. The Purang peridotites show wide variations of chemical compositions (spinel Cr#: 0.2–0.8) and Os model ages (up to 2.0 Ga), thus representing a piece of heterogeneous oceanic mantle lithosphere. Dunite channels show two distinctive groups of Cr# of spinels and Os-isotope compositions, with the low- to medium-Cr# (0.2–0.6) and high-Cr# (0.7–0.8) dunites reflecting the reaction of host lherzolites/harzburgites with percolating mid-ocean ridge basalt–like and boninitic melts, respectively. This confirms recent subduction initiation-related melt percolation in the Purang peridotites. Coexisting olivines and pyroxenes in the peridotites show systematic Li elemental and isotopic disequilibrium, suggesting fast cooling of the peridotites to Li closure temperature shortly after the melt percolations, likely during exhumation of the peridotites onto the seafloor. This supports a close link between subduction initiation and tectonic emplacement of the Purang peridotites. Combined with other geological evidence, we suggest the Purang peridotites may originate from the deep part of old, thick oceanic lithosphere of the Neo-Tethys. This thick oceanic lithosphere was progressively weakened and thinned likely during widespread plume-lithosphere interaction, triggering the transformation of garnet peridotite protoliths to spinel peridotites. Subsequently, initiation of a new subduction zone along the lithospheric weakness caused rapid ascent and emplacement of the Purang peridotites at a nascent forearc.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.