New age data for the Baoban Complex, South China establishes that it lay outboard of western Laurentia in the early Mesoproterozoic but was not part of the Cathaysia Block, with which it is traditional linked, until the mid-Paleozoic. Our geochronology data for detrital zircon and authigenic monazite grains from metasedimentary rocks indicate accumulation between ca. 1.55 Ga and 1.45 Ga for the Gezhencun succession of the Baoban Complex and ca. 1.45 Ga and 1.30 Ga for the Ewenling succession. The former unit is dominated by detrital zircon populations between 1900 Ma and 1500 Ma with two peaks at 1780 Ma and 1580 Ma. The Ewenling succession has detrital zircon peaks at 1720 Ma and 1450 Ma. Newly discovered gneissic granites were emplaced at 1550 Ma and intruded by 1450 Ma leucogranite dykes that are coeval with 1460–1430 Ma bimodal magmatism. The whole Baoban Complex was metamorphosed over the range of 1.3–0.9 Ga based on ages of authigenic zircon and monazite.

Depositional ages of metasedimentary rocks are coeval with successions of the Belt-Purcell Basin, western Laurentia. Detrital zircon from the two regions have similar age populations and Lu-Hf compositions, and display a synchronous provenance shift at ca. 1.45 Ga. Basement lithologies on Hainan Island range in age from ca. 1.55–1.43 Ga and underwent metamorphism during 1.3–0.9 Ga. This is younger than basement rocks on the mainland of the Cathaysia Block in South China, suggesting the two regions are spatially unrelated at this time and hence the Mesoproterozoic record of the island cannot constrain the location of the Cathaysia Block in the Nuna and Rodinia supercontinents.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.