The Paleocene-Eocene thermal maximum (PETM) is one of the most pronounced global warming events in the Cenozoic. This event was associated with a large negative carbon isotope excursion (CIE) and with major changes in the atmosphere, hydrosphere, and biosphere. However, how the larger benthic foraminifera (LBFs) in the shallow Tethyan Ocean responded to the PETM remains controversial. In this study, we investigate two shallow-marine, LBF-rich carbonate sections from south Tibet, aiming to locate the position of the Paleocene/Eocene (P/E) boundary in the Tethyan shallow benthic zones (SBZs) and to examine the response of the LBFs to the PETM. Carbon isotope compositions of bulk carbonate were measured to constrain the stratigraphic position of the CIE onset marking the P/E boundary in the sections, and the LBFs were studied in rock thin sections in order to assess their biostratigraphy and to construct the SBZs. The combination of the carbon isotope data and constructed SBZs shows that the P/E boundary is located within SBZ5, not at the SBZ4/SBZ5 transition as proposed in the Western Tethyan domain. At the P/E boundary, no evident compositional change in LBF assemblages can be observed. However, a major compositional change in LBF assemblages occurs in the CIE recovery, characterized by the sudden disappearance of Miscellanea, Ranikothalia, Setia, Orbitosiphon, and the initial dominance of porcellaneous-walled Alveolina and Orbitolites together with small miliolids and rotaliids. We tentatively speculate that this compositional change in LBF assemblages may be related to a eutrophication event, likely resulting from intensified continental weathering during the CIE recovery of the PETM.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.