Abstract

Exhumed magma conduits provide important evidence of the development and evolution of subvolcanic plumbing systems. We use a 5–14-m-thick flow-banded rhyolite dike in Arran (Scotland) to present the first reconstruction of the directions and styles of initial propagation and subsequent magma flow, based on mesoscale kinematic indicators. The dike has concave-inward dike-margin segments with plumose-like structures that record vertical and horizontal propagation of lobes, which inflated and linked to form a through-going sheet. Devitrified rhyolite zones at the dike margins show gentle to open folds. In contrast, glassy central parts of the dike are flow laminated and preserve folded and refolded isoclinal, curvilinear folds and sheath folds that record sustained progressive deformation. The inner interface between the glassy and devitrified facies is abrupt and marked by elongation lineations and mullions. In the dike center, fold axes plunge 27°NE along the dike, and parallel to elongation lineations. Combined with shear sense indicators (σ- and δ-objects, sheared vesicles, and asymmetric folds), these features indicate that magma flow was obliquely upward, to the southwest, and locally ≤60° to the propagation direction of the dike. The distribution of structures within the rhyolite indicates local accretion of the (now) devitrified material to the margins, with localization of flow into the center of the dike. We find that the initial magma flow direction was controlled by fracture propagation and interaction, with the subsequent flow record controlled by accretion and flow localization in the conduit. This study demonstrates that analysis of mesoscopic structural and kinematic features (several of which have not previously been reported from dikes) is a powerful tool that can be used to reconstruct the complex evolution of conduit initiation and magma flow processes.

You do not currently have access to this article.