Abstract

We used airborne light detection and ranging (LiDAR) data to reevaluate the single-event offsets of the 1920 Haiyuan Ms 8.5 earthquake and the cumulative offsets along the western and middle segments of the coseismic surface rupture zone. Our LiDAR data indicate that the offset observations along both the western and middle segments fall into groups. The group with the minimum slip amount is associated with the 1920 Haiyuan Ms 8.5 earthquake, which ruptured both the western and middle segments. Our research highlights two new interpretations: First, the previously reported maximum displacement of the 1920 earthquake was likely due to at least two earthquakes; second, our results reveal that the cumulative offset probability density (COPD) peaks of the same offset amounts on the western and middle segments do not correspond to one another one-to-one. We suggest that any discussion of the rupture pattern of a certain fault based on the offset data should also consider fault segmentation and paleoseismological data. Therefore, the COPD peaks should be computed and analyzed on fault subsections and not entire fault zones to study the number of paleoearthquakes and their rupture patterns.

You do not currently have access to this article.